Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-energy multidimensional solitary states in hollow-core fibres


Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiotemporal intermodal interactions and dynamics, albeit often in an unstable manner. Here, we report the observation of the formation of highly stable multidimensional solitary states in a molecular gas-filled large-core hollow-core fibre. We experimentally and numerically demonstrate the creation of MDSS by multimillijoule, subpicosecond near-infrared pulses and the underlying physics. We find that the MDSS have a broadband redshifted spectra with an uncommon negative quadratic spectral phase at the output of the hollow-core fibre, originating from Raman enhancement due to the strong intermodal nonlinear interactions. The spatial and temporal localization of MDSS enables the compression of the broadened pulses at the output to 10.8 fs by simple linear propagation in a piece of fused silica. The high spatiotemporal quality of MDSS is further verified by high-harmonic generation. Our results present new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. This work also presents a route toward a new class of compact, tunable and high-energy spatiotemporally engineered coherent light sources based on picosecond ytterbium technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual illustration and experimental observation of MDSS.
Fig. 2: Demonstration of MDSS creation and Raman enhancement via multidimensional interactions.
Fig. 3: Modal evolution of the self-trapped MDSS beam using 700 fs driver pulses with 5 mJ input energy.
Fig. 4: Temporal evolution of the self-trapped MDSS driven by 5 mJ, 700 fs pulses at 2,500 mbar.
Fig. 5: High-harmonic generation in argon using compressed MDSS pulses.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author (R.S.) on reasonable request.

Code availability

The computer code used in this study will be made available from the corresponding author (R.S.) on reasonable request.


  1. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012).

    Article  Google Scholar 

  2. Kartashov, Y. V., Astrakharchik, G. E., Malomed, B. A. & Torner, L. Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1, 185–197 (2019).

    Article  Google Scholar 

  3. Chen, Z., Segev, M. & Christodoulides, D. N. Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012).

    Article  ADS  Google Scholar 

  4. Kivshar, Y. S. & Agrawal, G. Optical Solitons: from Fibers to Photonic Crystals (Academic, 2003).

  5. Malomed, B., Torner Sabata, L., Wise, F. & Mihalache, D. On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics. J. Phys. B 49, 170502 (2016).

    Article  ADS  Google Scholar 

  6. Knight, P. & Miller, A. Optical Solitons: Theory and Experiment Vol. 10 (Cambridge Univ. Press, 1992).

  7. Malomed, B. A., Mihalache, D., Wise, F. & Torner, L. Spatiotemporal optical solitons. J. Opt. B 7, R53 (2005).

    Article  ADS  Google Scholar 

  8. Stegeman, G. I. & Segev, M. Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999).

    Article  Google Scholar 

  9. Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).

    Article  ADS  Google Scholar 

  10. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Spatiotemporal mode-locking in multimode fiber lasers. Science 358, 94–97 (2017).

    Article  ADS  Google Scholar 

  11. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photon. 9, 306–310 (2015).

    Article  ADS  Google Scholar 

  12. Eftekhar, M. et al. Accelerated nonlinear interactions in graded-index multimode fibers. Nat. Commun. 10, 1–10 (2019).

    Article  Google Scholar 

  13. Rishøj, L., Tai, B., Kristensen, P. & Ramachandran, S. Soliton self-mode conversion: revisiting Raman scattering of ultrashort pulses. Optica 6, 304–308 (2019).

    Article  ADS  Google Scholar 

  14. Pourbeyram, H., Agrawal, G. P. & Mafi, A. Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber. Appl. Phys. Lett. 102, 201107 (2013).

    Article  ADS  Google Scholar 

  15. Tani, F., Travers, J. C. & Russell, P. S. J. Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in Kagomé photonic-crystal fiber. JOSA B 31, 311–320 (2014).

    Article  ADS  Google Scholar 

  16. Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A. & Travers, J. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photon. 8, 278–286 (2014).

    Article  ADS  Google Scholar 

  17. Trabold, B., Abdolvand, A., Euser, T., Walser, A. & Russell, P. S. J. Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber. Opt. Lett. 38, 600–602 (2013).

    Article  ADS  Google Scholar 

  18. Wright, L. G. et al. Self-organized instability in graded-index multimode fibres. Nat. Photon. 10, 771–776 (2016).

    Article  ADS  Google Scholar 

  19. Wright, L. G. et al. Mechanisms of spatiotemporal mode-locking. Nat. Phys. 16, 565–570 (2020).

  20. Wright, L. G., Renninger, W. H., Christodoulides, D. N. & Wise, F. W. Spatiotemporal dynamics of multimode optical solitons. Opt. Express 23, 3492–3506 (2015).

    Article  ADS  Google Scholar 

  21. Marcatili, E. A. & Schmeltzer, R. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Labs Tech. J. 43, 1783–1809 (1964).

    Article  Google Scholar 

  22. Fan, G. et al. Hollow-core-waveguide compression of multi-millijoule CEP-stable 3.2 μm pulses. Optica 3, 1308–1311 (2016).

    Article  ADS  Google Scholar 

  23. Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).

    Article  ADS  Google Scholar 

  24. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  25. Balciunas, T. et al. A strong-field driver in the single-cycle regime based on self-compression in a Kagome fibre. Nat. Commun. 6, 1–7 (2015).

    Article  Google Scholar 

  26. Safaei, R. et al. Low energy pulse compression in hollow core fibers using hydrofluorocarbon molecular gas. OSA Continuum 2, 1488–1495 (2019).

    Article  Google Scholar 

  27. Fan, G. et al. High energy redshifted and enhanced spectral broadening by molecular alignment. Opt. Lett. 45, 3013–3016 (2020).

    Article  ADS  Google Scholar 

  28. Horak, P. & Poletti, F. in Recent Progress in Optical Fiber Research 3–25 (IntechOpen, 2012).

  29. Fibich, G. & Gaeta, A. L. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 25, 335–337 (2000).

    Article  ADS  Google Scholar 

  30. Mitschke, F. M. & Mollenauer, L. F. Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661 (1986).

    Article  ADS  Google Scholar 

  31. Skryabin, D., Luan, F., Knight, J. & Russell, P. S. J. Soliton self-frequency shift cancellation in photonic crystal fibers. Science 301, 1705–1708 (2003).

    Article  ADS  Google Scholar 

  32. Nagy, T. et al. Generation of three-cycle multi-millijoule laser pulses at 318 W average power. Optica 6, 1423–1424 (2019).

    Article  ADS  Google Scholar 

  33. Lu, C.-H. et al. Greater than 50 times compression of 1030 nm Yb: KGW laser pulses to single-cycle duration. Opt. Express 27, 15638–15648 (2019).

    Article  ADS  Google Scholar 

  34. Balla, P. et al. Postcompression of picosecond pulses into the few-cycle regime. Opt. Lett. 45, 2572–2575 (2020).

    Article  ADS  Google Scholar 

  35. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993).

    Article  ADS  Google Scholar 

  36. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  37. Fermann, M. E. & Hartl, I. Ultrafast fibre lasers. Nat. Photon. 7, 868–874 (2013).

    Article  ADS  Google Scholar 

  38. Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nat. Photon. 7, 861–867 (2013).

    Article  ADS  Google Scholar 

  39. Schmidt, B. E., Hage, A., Mans, T., Légaré, F. & Wörner, H. J. Highly stable, 54 mJ Yb-InnoSlab laser platform at 0.5 kW average power. Opt. Express 25, 17549–17555 (2017).

    Article  ADS  Google Scholar 

  40. Chen, B.-H. et al. Compression of picosecond pulses from a thin-disk laser to 30 fs at 4 W average power. Opt. Express 26, 3861–3869 (2018).

    Article  ADS  Google Scholar 

Download references


R.S. acknowledges financial support from the FRQNT Ph.D. scholarship programme. The research received funding from the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Fonds de Recherche du Qubec sur la Nature et les Technologies (FRQNT). We thank P. B. Corkum, J. Powell and S. Beaulieu for discussions.

Author information

Authors and Affiliations



R.S. performed the theoretical analysis and numerical simulations. R.S. and G.F. performed the experiment with the support of O.K. and K.L. R.S. and G.F. analysed the experimental data. R.S. wrote the manuscript with the support of G.F. and input from all other authors. F.L. supervised the project.

Corresponding authors

Correspondence to Reza Safaei or François Légaré.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Sections 1–12, Equations 1–13 and Tables 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, R., Fan, G., Kwon, O. et al. High-energy multidimensional solitary states in hollow-core fibres. Nat. Photonics 14, 733–739 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing