Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Attosecond-fast internal photoemission

Abstract

The photoelectric effect has a sister process relevant in optoelectronics called internal photoemission1,2,3. Here an electron is photoemitted from a metal into a semiconductor4,5. While the photoelectric effect takes place within less than 100 attoseconds (1 as = 10−18 seconds)6,7, the attosecond timescale has so far not been measured for internal photoemission. Based on the new method CHArge transfer time MEasurement via Laser pulse duration-dependent saturation fluEnce determinatiON—CHAMELEON—we show that the atomically thin semimetal graphene coupled to bulk silicon carbide, forming a Schottky junction, allows charge transfer times as fast as (300 ± 200) as. These results are supported by a simple quantum mechanical model simulation. With the obtained cut-off bandwidth of 3.3 PHz (1 PHz = 1015 Hz) for the charge transfer rate, this semimetal/semiconductor interface represents a functional solid-state interface offering the speed and design space required for future light-wave signal processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental configuration and photocurrent generation mechanisms.
Fig. 2: Measured photocurrent and model simulation results.
Fig. 3: Extraction of the charge transfer times from graphene to SiC.

Similar content being viewed by others

Data availability

Source data for Figs. 2 and 3 are provided with the article. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The custom computer code for these simulations is available from the corresponding authors on reasonable request.

References

  1. Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photon. 8, 205–213 (2014).

    Article  ADS  Google Scholar 

  2. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  ADS  Google Scholar 

  3. Tan, S. et al. Coherent electron transfer at the Ag/graphite heterojunction interface. Phys. Rev. Lett. 120, 126801 (2018).

    Article  ADS  Google Scholar 

  4. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

  5. Di Bartolomeo, A. Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 606, 1–58 (2016).

    Article  MathSciNet  Google Scholar 

  6. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    Article  ADS  Google Scholar 

  7. Ossiander, M. et al. Absolute timing of the photoelectric effect. Nature 561, 374–377 (2018).

    Article  ADS  Google Scholar 

  8. Fassioli, F., Dinshaw, R., Arpin, P. C. & Scholes, G. D. Photosynthetic light harvesting: excitons and coherence. J. R. Soc. Interface 11, 20130901 (2013).

    Article  Google Scholar 

  9. Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014).

    Article  ADS  Google Scholar 

  10. Wörner, H. J. et al. Charge migration and charge transfer in molecular systems. Struct. Dyn. 4, 061508 (2017).

    Article  Google Scholar 

  11. Scholes, G. D. et al. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647–656 (2017).

    Article  ADS  Google Scholar 

  12. Ma, Q. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 12, 455–460 (2016).

    Article  Google Scholar 

  13. Zheng, Q. et al. Phonon-assisted ultrafast charge transfer at van der Waals heterostructure interface. Nano Lett. 17, 6435–6442 (2017).

    Article  ADS  Google Scholar 

  14. Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    Article  ADS  Google Scholar 

  15. Föhlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005).

    Article  ADS  Google Scholar 

  16. Menzel, D. Ultrafast charge transfer at surfaces accessed by core electron spectroscopies. Chem. Soc. Rev. 37, 2212–2223 (2008).

    Article  Google Scholar 

  17. Borges, B. G. A. L., Roman, L. S. & Rocco, M. L. M. Femtosecond and attosecond electron transfer dynamics of semiconductors probed by the core-hole clock spectroscopy. Top. Catal. 62, 1004–1010 (2019).

    Article  Google Scholar 

  18. Brühwiler, P. A., Karis, O. & Martensson, N. Charge-transfer dynamics studied using resonant core spectroscopies. Rev. Mod. Phys. 74, 703–740 (2002).

    Article  ADS  Google Scholar 

  19. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  ADS  Google Scholar 

  20. Höfer, U. & Echenique, P. M. Resolubility of image-potential resonances. Surf. Sci. 643, 203–209 (2016).

    Article  ADS  Google Scholar 

  21. Marini, A., Cox, J. D. & García De Abajo, F. J. Theory of graphene saturable absorption. Phys. Rev. B 95, 125408 (2017).

    Article  ADS  Google Scholar 

  22. Winzer, T. et al. Absorption saturation in optically excited graphene. Appl. Phys. Lett. 101, 221115 (2012).

    Article  ADS  Google Scholar 

  23. Xing, G., Guo, H., Zhang, X., Sum, T. C. & Huan, C. H. A. The physics of ultrafast saturable absorption in graphene. Opt. Express 18, 4564–4573 (2010).

    Article  ADS  Google Scholar 

  24. Tielrooij, K. J. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10, 437–443 (2015).

    Article  ADS  Google Scholar 

  25. Gierz, I. et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).

    Article  ADS  Google Scholar 

  26. Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).

    Article  ADS  Google Scholar 

  27. Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article  ADS  Google Scholar 

  28. Liang, S. J. & Ang, L. K. Electron thermionic emission from graphene and a thermionic energy converter. Phys. Rev. Appl. 3, 014002 (2015).

    Article  ADS  Google Scholar 

  29. Massicotte, M. et al. Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun. 7, 12174 (2016).

    Article  ADS  Google Scholar 

  30. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article  ADS  Google Scholar 

  31. You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).

    Article  Google Scholar 

  32. Langer, F. et al. Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 557, 76–80 (2018).

    Article  ADS  Google Scholar 

  33. Garzón-Ramírez, A. J. & Franco, I. Stark control of electrons across interfaces. Phys. Rev. B 98, 121305(R) (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the European Research Council (Consolidator Grant “NearFieldAtto”), Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 953 “Synthetic Carbon Allotropes”, project 182849149 and project WE 3542/7-1) and the PETACom project financed by the Future and Emerging Technologies Open H2020 programme. C.H. is part of the Max Planck School of Photonics supported by BMBF, Max Planck Society and Fraunhofer Society. P.H. greatfully acknowledges a fellowship from the Max Planck Institute of the Science of Light (MPL).

Author information

Authors and Affiliations

Authors

Contributions

C.H., T.H., M.H., H.B.W. and P.H. conceived the study. C.H. and M.H. conducted the photocurrent measurements. C.H. analysed the data and provided the plots. M.H. fabricated the samples. C.H. performed the numerical simulations. All authors discussed the obtained results and contributed to the writing of the manuscript. H.B.W. and P.H. co-supervised the experiments.

Corresponding authors

Correspondence to Christian Heide or Peter Hommelhoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Bias-controlled electric field at the Schottky junction.

a, Applying no or a slightly positive bias voltage VB reduces the DC electric field at the Schottky junction, hampering a fast charge transfer. b, A large reverse bias voltage leads to a greater band bending in SiC and hence a larger DC electric field at the interface, increasing the charge transfer rate dramatically (Fig. 3).

Extended Data Fig. 2 Photocurrent for various experimental conditions.

a,b, Photocurrent (a) and efficiency (b) versus laser pulse fluence F as a function of τp and VB. Coloured circles show the data points, while the solid lines are fits including the contributions from PIPE, PTI and 2P-PIPE as explained in Fig. 2b,c. The resulting saturation fluences Fs are indicated by black solid dots. Different colours represent different bias voltages from +0.1 to –6 V (grey to red, see legend). Increasing the negative bias voltage enhances the PIPE extraction rate. As a consequence, Fs is shifted to higher values. Since the saturation is shifted, the superlinear PTI contribution becomes more visible (larger bump). Increasing τp reduces PTI since a high electron temperature can only be reached with short laser pulses, and the saturation is shifted to higher values as well.

Supplementary information

Supplementary Information

Supplementary Information and Figs. 1–7.

Source data

Source Data Fig. 2

Numerical data: measured current versus laser fluence for 0 V and –6 V.

Source Data Fig. 3

Numerical data: saturation fluence versus GDD for –6, –4, –0.3, –0.1 and 0 V.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heide, C., Hauck, M., Higuchi, T. et al. Attosecond-fast internal photoemission. Nat. Photonics 14, 219–222 (2020). https://doi.org/10.1038/s41566-019-0580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0580-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing