Abstract
Strong-field-driven electric currents in condensed-matter systems are opening new frontiers in petahertz electronics. In this regime, new challenges are arising as the roles of band structure and coherent electron–hole dynamics have yet to be resolved. Here, by using high-harmonic generation spectroscopy, we reveal the underlying attosecond dynamics that dictates the temporal evolution of carriers in multi-band solid-state systems. We demonstrate that when the electron–hole relative velocity approaches zero, enhanced constructive interference leads to the appearance of spectral caustics in the high-harmonic generation spectrum. We introduce the role of the dynamical joint density of states and identify its mapping into the spectrum, which exhibits singularities at the spectral caustics. By studying these singularities, we probe the structure of multiple unpopulated high conduction bands.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Attosecond magnetization dynamics in non-magnetic materials driven by intense femtosecond lasers
npj Computational Materials Open Access 23 March 2023
-
Role of Van Hove singularities and effective mass anisotropy in polarization-resolved high harmonic spectroscopy of silicon
Communications Physics Open Access 18 November 2022
-
Observation of light-driven band structure via multiband high-harmonic spectroscopy
Nature Photonics Open Access 02 June 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).
Vampa, G. et al. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).
Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).
Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).
Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).
Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).
Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).
Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016).
You, Y. S. et al. High-harmonic generation in amorphous solids. Nat. Commun. 8, 724 (2017).
You, Y. S. et al. Laser waveform control of extreme ultraviolet high harmonics from solids. Opt. Lett. 42, 1816–1819 (2017).
Hawkins, P. G., Ivanov, M. Y. & Yakovlev, V. S. Effect of multiple conduction bands on high-harmonic emission from dielectrics. Phys. Rev. A 91, 013405 (2015).
Silva, R., Blinov, I. V., Rubtsov, A. N., Smirnova, O. & Ivanov, M. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems. Nat. Photon. 12, 266–270 (2018).
Vampa, G., McDonald, C., Orlando, G., Corkum, P. & Brabec, T. Semiclassical analysis of high harmonic generation in bulk crystals. Phys. Rev. B 91, 064302 (2015).
Ashcroft, N. W. & Mermin, N. D. in Solid State Physics 144–145 (Holt, Rinehart and Winston, 1976).
Van Hove, L. The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189–1193 (1953).
Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).
Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).
Kemper, A., Moritz, B., Freericks, J. & Devereaux, T. Theoretical description of high-order harmonic generation in solids. New J. Phys. 15, 023003 (2013).
Higuchi, T., Stockman, M. I. & Hommelhoff, P. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. 113, 213901 (2014).
Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901 (2014).
Golde, D., Meier, T. & Koch, S. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).
Tancogne-Dejean, N., Mücke, O. D., Kärtner, F. X. & Rubio, A. Impact of the electronic band structure in high-harmonic generation spectra of solids. Phys. Rev. Lett. 118, 087403 (2017).
Raz, O., Pedatzur, O., Bruner, B. D. & Dudovich, N. Spectral caustics in attosecond science. Nat. Photon. 6, 170–173 (2012).
Upstill, C. & Berry, M. IV Catastrophe optics: morphologies of caustics and their diffraction patterns. Prog. Optics 18, 257–346 (1980).
You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).
Wu, M. et al. Orientation dependence of temporal and spectral properties of high-order harmonics in solids. Phys. Rev. A 96, 063412 (2017).
Bruner, B. D. et al. Multidimensional high harmonic spectroscopy. J. Phys. B 48, 174006 (2015).
Li, J.-B. et al. Enhancement of the second plateau in solid high-order harmonic spectra by the two-color fields. Opt. Express 25, 18603–18613 (2017).
Ehrenreich, H. & Philipp, H. Optical properties of Ag and Cu. Phys. Rev. 128, 1622–1629 (1962).
Roessler, D. & Walker, W. Electronic spectrum and ultraviolet optical properties of crystalline MgO. Phys. Rev. 159, 733–738 (1967).
Faccialà, D. et al. Probe of multielectron dynamics in xenon by caustics in high-order harmonic generation. Phys. Rev. Lett. 117, 093902 (2016).
Silva, R., Martín, F. & Ivanov, M. High harmonic generation in crystals using maximally localized Wannier functions. Phys. Rev. B 100, 195201 (2019).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. 21, 395502 (2009).
Levine, Z. H. & Allan, D. C. Linear optical response in silicon and germanium including self-energy effects. Phys. Rev. Lett. 63, 1719–1722 (1989).
Mostofi, A. A. et al. An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).
Acknowledgements
N.D. is the incumbent of the Robin Chemers Neustein Professorial Chair. N.D. acknowledges financial support from the Minerva Foundation, the Israeli Science Foundation, the Crown Center of Photonics and the European Research Council. M.K. acknowledges financial support from the Minerva Foundation and the Koshland Foundation.
Author information
Authors and Affiliations
Contributions
N.D., A.J.U. and G.O. conceived and planned the experiments. A.J.U., G.O., V.B., T.A.-P. and B.D.B. performed the measurements. A.J.U. and G.O. analysed the data. A.J.U., G.O., A.J.-G., C.M., R.E.F.S., N.D.K., M.K., A.N.R., O.S., M.I., B.Y. and T.B. developed the theoretical models and analysis. All authors discussed the results and contributed to writing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7 and Discussion.
Rights and permissions
About this article
Cite this article
Uzan, A.J., Orenstein, G., Jiménez-Galán, Á. et al. Attosecond spectral singularities in solid-state high-harmonic generation. Nat. Photonics 14, 183–187 (2020). https://doi.org/10.1038/s41566-019-0574-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-019-0574-4
This article is cited by
-
Attosecond magnetization dynamics in non-magnetic materials driven by intense femtosecond lasers
npj Computational Materials (2023)
-
Lightwave electronics in condensed matter
Nature Reviews Materials (2023)
-
Identification of CO2 adsorption sites on MgO nanosheets by solid-state nuclear magnetic resonance spectroscopy
Nature Communications (2022)
-
Role of Van Hove singularities and effective mass anisotropy in polarization-resolved high harmonic spectroscopy of silicon
Communications Physics (2022)
-
High harmonic generation in condensed matter
Nature Photonics (2022)