Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Raman laser from an optical resonator with a grafted single-molecule monolayer

Abstract

Raman-based technologies have enabled many ground-breaking scientific discoveries related to surface science, single-molecule chemistry and biology. For example, researchers have identified surface-bound molecules by their Raman vibrational modes and demonstrated polarization-dependent Raman gain. However, a surface-constrained Raman laser has yet to be demonstrated because of the challenges associated with achieving a sufficiently high photon population located at a surface to transition from spontaneous to stimulated Raman scattering. Here, advances in surface chemistry and in integrated photonics are combined to demonstrate lasing based on surface stimulated Raman scattering (SSRS). By creating an oriented, constrained Si–O–Si monolayer on the surface of integrated silica optical microresonators, the requisite conditions for SSRS are achieved with low threshold powers (200 μW). The expected polarization dependence of SSRS due to the orientation of the Si–O–Si bond is observed. Owing to the ordered monolayer, the Raman lasing efficiency is improved from ~5% to over 40%.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Excitation of SSRS using an integrated optical microcavity.
Fig. 2: Surface chemistry on silica resonator devices.
Fig. 3: Device characterization method and optical device performance.
Fig. 4: Characterization of Raman emission.
Fig. 5: Raman lasing behaviours.
Fig. 6: Comparison of Raman lasing performance from OH, MS and DMS devices with two different diameters (~53 μm and ~83 μm) excited at two different polarizations.

Data availability

The data that support the plots with this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Minck, R. W., Terhune, R. W. & Rado, W. G. Laser-stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4. Appl. Phys. Lett. 3, 181–184 (1963).

    ADS  Article  Google Scholar 

  2. 2.

    Stolen, R. Polarization effects in fiber Raman and Brillouin lasers. IEEE J. Quant. Electron. 15, 1157–1160 (1979).

    ADS  Article  Google Scholar 

  3. 3.

    Karpov, V. I. et al. Laser-diode-pumped phosphosilicate-fiber Raman laser with an output power of 1 W at 1.48 µm. Opt. Lett. 24, 887–889 (1999).

    ADS  Article  Google Scholar 

  4. 4.

    Benabid, F., Knight, J., Antonopoulos, G. & Russell, P. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399–402 (2002).

    ADS  Article  Google Scholar 

  5. 5.

    Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    ADS  Article  Google Scholar 

  6. 6.

    Feve, J.-P. M., Shortoff, K. E., Bohn, M. J. & Brasseur, J. K. High average power diamond Raman laser. Opt. Express 19, 913–922 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    Liu, X. et al. Integrated continuous-wave aluminum nitride Raman laser. Optica 4, 893–896 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Eckhardt, G., Bortfeld, D. & Geller, M. Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and α-sulfur single crystals. Appl. Phys. Lett. 3, 137–138 (1963).

    ADS  Article  Google Scholar 

  9. 9.

    Pan, A. et al. Stimulated emissions in aligned CdS nanowires at room temperature. J. Phys. Chem. B 109, 24268–24272 (2005).

    Article  Google Scholar 

  10. 10.

    Hokr, B. H. et al. Bright emission from a random Raman laser. Nat. Commun. 5, 4356 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Basiev, T. New crystals for Raman lasers. Phys. Solid State 47, 1400–1405 (2005).

    ADS  Article  Google Scholar 

  12. 12.

    Latawiec, P. et al. On-chip diamond Raman laser. Optica 2, 924–928 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Raymer, M. G., Mostowski, J. & Carlsten, J. L. Theory of stimulated Raman scattering with broad-band lasers. Phys. Rev. A 19, 2304–2316 (1979).

    ADS  Article  Google Scholar 

  14. 14.

    Raman, C. & Krishnan, K. A new type of secondary radiation. Nature 121, 501–502 (1928).

    ADS  Article  Google Scholar 

  15. 15.

    Heritage, J. P. in Picosecond Phenomena II (eds Shank, C. V. et al.) 343–347 (Springer Berlin Heidelberg, 1980).

  16. 16.

    Cazzanelli, M. & Schilling, J. Second order optical nonlinearity in silicon by symmetry breaking. Appl. Phys. Rev. 3, 011104 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Zhang, X. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photon. 13, 21–24 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    Jalali, B., Raghunathan, V., Dimitropoulos, D. & Boyraz, O. Raman-based silicon photonics. IEEE J. Sel. Top. Quant. Electron. 12, 412–421 (2006).

    ADS  Article  Google Scholar 

  19. 19.

    Wei, H. et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett. 8, 2497–2502 (2008).

    ADS  Article  Google Scholar 

  20. 20.

    Presser, V. et al. Raman polarization studies of highly oriented organic thin films. J. Raman Spectrosc. 40, 2015–2022 (2009).

    ADS  Article  Google Scholar 

  21. 21.

    Shen, Y. R. Nonlinear optical studies of surfaces. Appl. Phys. A 59, 541–543 (1994).

    ADS  Article  Google Scholar 

  22. 22.

    Vahala, K. Optical microcavities. Nature 424, 839–846 (2003).

    ADS  Article  Google Scholar 

  23. 23.

    Shi, C., Soltani, S. & Armani, A. M. Gold nanorod plasmonic upconversion microlaser. Nano Lett. 13, 5827–5831 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    Maker, A. J. & Armani, A. M. Nanowatt threshold, alumina sensitized neodymium laser integrated on silicon. Opt. Express 21, 27238–27245 (2013).

    ADS  Article  Google Scholar 

  25. 25.

    Castro-Beltrán, R., Diep, V. M., Soltani, S., Gungor, E. & Armani, A. M. Plasmonically enhanced Kerr frequency combs. ACS Photon. 4, 2828–2834 (2017).

    Article  Google Scholar 

  26. 26.

    Choi, H. & Armani, A. M. Raman–Kerr frequency combs in Zr-doped silica hybrid microresonators. Opt. Lett. 43, 2949–2952 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Ma, J., Jiang, X. & Xiao, M. Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates. Photon. Res. 5, B54–B58 (2017).

    Article  Google Scholar 

  28. 28.

    Ilchenko, V. & Matsko, A. Optical resonators with whispering-gallery modes—part II: applications. IEEE J. Sel. Top. Quant. Electron. 12, 15–32 (2006).

    ADS  Article  Google Scholar 

  29. 29.

    Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    ADS  Article  Google Scholar 

  30. 30.

    Choi, H. & Armani, A. M. High efficiency Raman lasers based on Zr-doped silica hybrid microcavities. ACS Photon. 3, 2383–2388 (2016).

    Article  Google Scholar 

  31. 31.

    Dimitropoulos, D., Houshmand, B., Claps, R. & Jalali, B. Coupled-mode theory of the Raman effect in silicon-on-insulator waveguides. Opt. Lett. 28, 1954–1956 (2003).

    ADS  Article  Google Scholar 

  32. 32.

    Sabella, A., Piper, J. A. & Mildren, R. P. 1240 nm diamond Raman laser operating near the quantum limit. Opt. Lett. 35, 3874–3876 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Chen, C.-Y. et al. Understanding the interplay between molecule orientation and graphene using polarized Raman spectroscopy. ACS Photon. 3, 985–991 (2016).

    Article  Google Scholar 

  34. 34.

    Armani, D., Kippenberg, T., Spillane, S. & Vahala, K. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    ADS  Article  Google Scholar 

  35. 35.

    Facchetti, A. et al. Strategies for electrooptic film fabrication. Influence of pyrrole-pyridine-based dibranched chromophore architecture on covalent self-assembly, thin-film microstructure, and nonlinear optical response. J. Am. Chem. Soc. 128, 2142–2153 (2006).

    Article  Google Scholar 

  36. 36.

    Schlecht, C. A. & Maurer, J. A. Functionalization of glass substrates: mechanistic insights into the surface reaction of trialkoxysilanes. RSC Adv. 1, 1446–1448 (2011).

    Article  Google Scholar 

  37. 37.

    Newton, M. D. & Gibbs, G. V. Ab initio calculated geometries and charge distributions for H4SiO4 and H6Si2O7 compared with experimental values for silicates and siloxanes. Phys. Chem. Miner. 6, 221–246 (1980).

    ADS  Article  Google Scholar 

  38. 38.

    Tyaginov, S., Sverdlov, V., Starkov, I., Goes, W. & Grasser, T. Impact of O-Si-O bond angle fluctuations on the Si-O bond-breakage rate. Microelectron. Reliab. 49, 998–1002 (2009).

    Article  Google Scholar 

  39. 39.

    Hunt, H. K., Soteropulos, C. & Armani, A. M. Bioconjugation strategies for microtoroidal optical resonators. Sensors 10, 9317–9336 (2010).

    Article  Google Scholar 

  40. 40.

    Zhao, W., He, A. & Xu, Y. Raman second hyperpolarizability determination using computational Raman activities and a comparison with experiments. J. Phys. Chem. A 117, 6217–6223 (2013).

    Article  Google Scholar 

  41. 41.

    Goda, K., Mahjoubfar, A. & Jalali, B. Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging. Appl. Phys. Lett. 95, 251101 (2009).

    ADS  Article  Google Scholar 

  42. 42.

    Mookherjea, S. & Yariv, A. Coupled resonator optical waveguides. IEEE J. Sel. Top. Quant. Electron. 8, 448–456 (2002).

    ADS  Article  Google Scholar 

  43. 43.

    Deka, N., Maker, A. J. & Armani, A. M. Titanium-enhanced Raman microcavity laser. Opt. Lett. 39, 1354–1357 (2014).

    ADS  Article  Google Scholar 

  44. 44.

    Hollenbeck, D. & Cantrell, C. D. Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B 19, 2886–2892 (2002).

    ADS  Article  Google Scholar 

  45. 45.

    Yu, Y. et al. New C-H stretching vibrational spectral features in the Raman spectra of gaseous and liquid ethanol. J. Phys. Chem. C 111, 8971–8978 (2007).

    Article  Google Scholar 

  46. 46.

    Shen, X., Castro Beltran, R., Diep, V. M., Soltani, S. & Armani, A. M. Low-threshold parametric oscillation in organically modified microcavities. Sci. Adv. 4, eaao4507 (2018).

    ADS  Article  Google Scholar 

  47. 47.

    Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    ADS  Article  Google Scholar 

  48. 48.

    Longhi, S. & Feng, L. Unidirectional lasing in semiconductor microring lasers at an exceptional point. Photon. Res. 5, B1–B6 (2017).

    Article  Google Scholar 

  49. 49.

    Yao, B. et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature 558, 410–414 (2018).

    ADS  Article  Google Scholar 

  50. 50.

    Reeves, L., Wang, Y. & Krauss, T. F. 2D material microcavity light emitters: to lase or not to lase? Adv. Opt. Mater. 6, 1800272 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Xiao and J. Chen for helpful discussions and M. Veksler for scientific visualization. We would like to acknowledge IARPA (2016-16070100002) and the Office of Naval Research (N00014-17-2270).

Author information

Affiliations

Authors

Contributions

X.S. and H.C. conceived the project. X.S., H.C. and A.M.A. designed the experiments. H.C. fabricated the devices. X.S. functionalized the devices. X.S. and H.C. conducted testing and data analysis. W.Z. conducted DFT simulations of the model molecules. D.C. performed the finite-element method simulations. X.S., H.C. and A.M.A. wrote the manuscript. All authors revised and commented on the manuscript. All authors have given approval to the final version of the manuscript and Supplementary Information.

Corresponding authors

Correspondence to Xiaoqin Shen or Andrea M. Armani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary details, Figs. 1–6, refs. 1–10 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Choi, H., Chen, D. et al. Raman laser from an optical resonator with a grafted single-molecule monolayer. Nat. Photonics 14, 95–101 (2020). https://doi.org/10.1038/s41566-019-0563-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing