Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices


The excitation dynamics in complex networks1 can describe the fundamental aspects of transport and localization across multiple fields of science, ranging from solid-state physics and photonics to biological signalling pathways and neuromorphic circuits2,3,4,5. Although the effects of increasing network dimensionality are highly non-trivial, their implementation likewise becomes ever more challenging due to the exponentially growing numbers of sites and connections6,7,8. To address these challenges, we formulate a universal approach for mapping arbitrary networks to synthesized one-dimensional lattices with strictly local inhomogeneous couplings, where the dynamics at the excited site is exactly replicated. We present direct experimental observations in judiciously designed planar photonic structures, showcasing non-monotonic excitation decays associated with up to seven-dimensional hypercubic lattices, and demonstrate a novel sharp localization transition specific to four and higher dimensions. The unprecedented capability of experimentally exploring multi-dimensional dynamics and harnessing their unique features in one-dimensional lattices can find multiple applications in diverse physical systems, including photonic integrated circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mapping multi-dimensional networks to 1D lattices.
Fig. 2: Experimental verification of synthesizing the excitation dynamics of a 2D structure in a 1D lattice.
Fig. 3: Experimental observation of excitation dynamics mapped from 1D, 3D and 7D hypercubic lattices.
Fig. 4: Sharp transition of defect localization in 4D and higher-dimensional hypercubic lattices and direct experimental evidence.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    ADS  MATH  Article  Google Scholar 

  2. 2.

    Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003).

    ADS  Article  Google Scholar 

  3. 3.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Scott, A. Davydov’s soliton. Phys. Rep. 217, 1–67 (1992).

    ADS  MATH  Article  Google Scholar 

  5. 5.

    Prucnal, P. R. & Shastri, B. J. Neuromorphic Photonics (CRC Press, 2017).

  6. 6.

    Boada, O., Celi, A., Latorre, J. I. & Lewenstein, M. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Yuan, L. Q., Lin, Q., Xiao, M. & Fan, S. H. Synthetic dimension in photonics. Optica 5, 1396–1405 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).

    Article  Google Scholar 

  9. 9.

    Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization—absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    ADS  Article  Google Scholar 

  10. 10.

    Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localisation in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    ADS  Article  Google Scholar 

  11. 11.

    Lahini, Y. et al. Anderson localisation and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    Conti, C. & Fratalocchi, A. Dynamic light diffusion, three-dimensional Anderson localisation and lasing in inverted opals. Nat. Phys. 4, 794–798 (2008).

    Article  Google Scholar 

  13. 13.

    Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature 553, 59–62 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Regensburger, A. et al. Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett. 107, 233902 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Stuhl, B. K., Lu, H. I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1517 (2015).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Yuan, L. Q., Shi, Y. & Fan, S. H. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Yuan, L. Q., Xiao, M., Lin, Q. & Fan, S. H. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Phys. Rev. B 97, 104105 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    ADS  Article  Google Scholar 

  22. 22.

    Miri, M. A., Heinrich, M. & Christodoulides, D. N. SUSY-inspired one-dimensional transformation optics. Optica 1, 89–95 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Teimourpour, M. H., Ge, L., Christodoulides, D. N. & El-Ganainy, R. Non-Hermitian engineering of single mode two dimensional laser arrays. Sci. Rep. 6, 33253 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Yu, S., Piao, X., Hong, J. & Park, N. Interdimensional optical isospectrality inspired by graph networks. Optica 3, 836–839 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Economou, E. N. Green’s Functions in Quantum Physics 3rd edn (Springer, 2006).

  26. 26.

    Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljacic, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand. 45, 255–282 (1950).

    MathSciNet  Article  Google Scholar 

  28. 28.

    Paige, C. C. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem. Linear Algebra Appl. 34, 235–258 (1980).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B 43, 163001 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    Jukić, D. & Buljan, H. Four-dimensional photonic lattices and discrete tesseract solitons. Phys. Rev. A 87, 013814 (2013).

    ADS  Article  Google Scholar 

Download references


This work was supported by the Australian Research Council (DP160100619, DP170103778 and DP190100277), the Australia–Germany Joint Research Cooperation Scheme, Erasmus Mundus (NANOPHI 2013 5659/002-001), the Alexander von Humboldt-Stiftung and the German Research Foundation (BL 574/13-1, SZ 276/15-1). A.S. acknowledges financial support from the Alfried Krupp von Bohlen und Halbach Foundation. K.W. acknowledges discussions with S. Fan and financial support from the Robert and Helen Crompton Award and SPIE Optics and Photonics Education Scholarship. The work of D.N.C. was partially supported by ARO (grant no. W911NF-17-1-0481), ONR (grant no. N00014-18-1-2347), the Qatar Foundation (NPRP9-020-1-006) and by US–Israel BSF (2016381). The work of A.E.M. was supported by the UNSW Scientia Fellowship. The authors also thank C. Otto for preparing the high-quality fused-silica samples used in all experiments presented here.

Author information




The theory was developed by K.W., A.A.D., A.E.M., A.M., D.N.C. and A.A.S. The design, implementation and characterization of the lattice structure were carried out by L.J.M., M.E., M.H. and A.S. The project was supervised by A.S. and A.A.S. All authors discussed the results and co-wrote the paper.

Corresponding authors

Correspondence to Alexander Szameit or Andrey A. Sukhorukov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maczewsky, L.J., Wang, K., Dovgiy, A.A. et al. Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices. Nat. Photonics 14, 76–81 (2020).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing