Spectral super-resolution spectroscopy using a random laser

Abstract

Super-resolution microscopy refers to a powerful set of imaging techniques that overcome the diffraction limit. Some of these techniques, the importance of which was recognized by the 2014 Nobel Prize for chemistry, are based on the concept of image reconstruction by spatially sparse sampling. Here, we introduce the concept of super-resolution spectroscopy based on sparse sampling in the frequency domain, and show that this can be naturally achieved using a random laser source. In its chaotic regime, the emission spectrum of a random laser features sharp spikes at uncorrelated frequencies that are sparsely distributed over the emission bandwidth. These narrow lasing modes probe stochastically the spectral response of a sample, allowing it to be reconstructed with a resolution exceeding that of the spectrometer. We envision that the proposed technique will inspire a new generation of simple, cheap, high-resolution spectroscopy tools with a reduced footprint.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Numerical demonstration of super-resolved spectroscopy.
Fig. 2: Experimental apparatus for super-resolved spectroscopy.
Fig. 3: Low-resolution peak selection.
Fig. 4: Experimental demonstration of super-resolved spectroscopy.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request. Source data for Figs. 1–4 are provided with the paper.

References

  1. 1.

    Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S. & Kostelak, R. L. Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251, 1468–1470 (1991).

    ADS  Article  Google Scholar 

  2. 2.

    Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    ADS  Article  Google Scholar 

  3. 3.

    Gazit, S., Szameit, A., Eldar, Y. C. & Segev, M. Super-resolution and reconstruction of sparse sub-wavelength images. Opt. Express 17, 23920 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    Szameit, A. et al. Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater. 11, 455–459 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Huang, F. M. & Zheludev, N. I. Super-resolution without evanescent waves. Nano Lett. 9, 1249–1254 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  Google Scholar 

  7. 7.

    Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  Article  Google Scholar 

  9. 9.

    Kawata, S., Minami, K. & Minami, S. Superresolution of Fourier transform spectroscopy data by the maximum entropy method. Appl. Opt. 22, 3593–3598 (1983).

    ADS  Article  Google Scholar 

  10. 10.

    Sidorenko, P. et al. Super-resolution spectroscopy by compact representation. In Frontiers in Optics 2012/Laser Science XXVIII FM3F.5 (OSA, 2012).

  11. 11.

    Pedrotti, F. L., & Pedrotti, L. S. Introduction to Optics (Prentice-Hall, 1987).

  12. 12.

    Blass, W. E. & Halsey, G. W. Deconvolution of Absorption Spectra (Academic, 1981).

  13. 13.

    Mou-Yan, Z. & Unbehauen, R. A deconvolution method for spectroscopy. Meas. Sci. Technol. 6, 482–487 (1995).

    ADS  Article  Google Scholar 

  14. 14.

    Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008).

    Article  Google Scholar 

  15. 15.

    Liu, J. et al. Random nanolasing in the Anderson localized regime. Nat. Nanotechnol. 9, 285–289 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Cao, H., Chriki, R., Bittner, S., Friesem, A. A. & Davidson, N. Complex lasers with controllable coherence. Nat. Rev. Phys. 1, 156–168 (2019).

    Article  Google Scholar 

  17. 17.

    Uppu, R., Tiwari, A. K. & Mujumdar, S. Identification of statistical regimes and crossovers in coherent random laser emission. Opt. Lett. 37, 662–664 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Araújo, C., Gomes, A. & Raposo, E. Lévy statistics and the glassy behavior of light in random fiber lasers. Appl. Sci. 7, 644 (2017).

    Article  Google Scholar 

  19. 19.

    Sharma, D., Ramachandran, H. & Kumar, N. Lévy statistics of emission from a novel random amplifying medium: an optical realization of the Arrhenius cascade. Opt. Lett. 31, 1806–1808 (2006).

    ADS  Article  Google Scholar 

  20. 20.

    Bachelard, N., Gigan, S., Noblin, X. & Sebbah, P. Adaptive pumping for spectral control of random lasers. Nat. Phys. 10, 426–431 (2014).

    Article  Google Scholar 

  21. 21.

    Zhu, L., Zhang, W., Elnatan, D. & Huang, B. Faster STORM using compressed sensing. Nat. Methods 9, 721–723 (2012).

    Article  Google Scholar 

  22. 22.

    Katz, O., Bromberg, Y. & Silberberg, Y. Compressive ghost imaging. Appl. Phys. Lett. 95, 131110 (2009).

    ADS  Article  Google Scholar 

  23. 23.

    Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    ADS  Article  Google Scholar 

  24. 24.

    Liang, H. K. et al. Electrically pumped mid-infrared random lasers. Adv. Mater. 25, 6859–6863 (2013).

    Article  Google Scholar 

  25. 25.

    Ni, P. N. et al. Fabry-Perot resonance enhanced electrically pumped random lasing from ZnO films. Appl. Phys. Lett. 107, 231108 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Liu, X.-Y., Shan, C.-X., Wang, S.-P., Zhang, Z.-Z. & Shen, D.-Z. Electrically pumped random lasers fabricated from ZnO nanowire arrays. Nanoscale 4, 2843–2846 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    Yu, S. F. Electrically pumped random lasers. J. Phys. D 48, 483001 (2015).

    Article  Google Scholar 

  28. 28.

    Chu, S., Olmedo, M., Yang, Z., Kong, J. & Liu, J. Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 93, 181106 (2008).

    ADS  Article  Google Scholar 

  29. 29.

    Ma, X., Chen, P., Li, D., Zhang, Y. & Yang, D. Electrically pumped ZnO film ultraviolet random lasers on silicon substrate. Appl. Phys. Lett. 91, 251109 (2007).

    ADS  Article  Google Scholar 

  30. 30.

    Li, Y., Wang, C., Jin, L., Ma, X. & Yang, D. Electrically pumped random lasing from the light-emitting device based on two-fold-tandem SiO2/ZnO structure. Appl. Phys. Lett. 102, 161112 (2013).

    ADS  Article  Google Scholar 

  31. 31.

    Qiao, Q. et al. Surface plasmon enhanced electrically pumped random lasers. Nanoscale 5, 513–517 (2013).

    ADS  Article  Google Scholar 

  32. 32.

    Poison, R. C., Raikh, M. E. & Vardeny, Z. V. Universal properties of random lasers. IEEE J. Sel. Top. Quant. Electron. 9, 120–123 (2003).

    ADS  Article  Google Scholar 

  33. 33.

    Frolov, S. V., Vardeny, Z. V., Yoshino, K., Zakhidov, A. & Baughman, R. H. Stimulated emission in high-gain organic media. Phys. Rev. B 59, R5284 (1999).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Caporali for his assistance with sputter deposition of the FP mirrors and L. Mariani for advice on the optical fibre elements. We thank M. De Pas, A. Montori and M. Giuntini for their assistance with the set-up of the electronics and R. Ballerini and A. Hajeb for the realizations of the mechanical elements. This research was funded by Ente Cassa di Risparmio Firenze (grant 2016-0866), Ministero dell’Istruzione dell’Università e della Ricerca Italiano (grant PRIN2017-2017Z55KCW), European Community by Laserlab-Europe (grant H2020 EC-GA-654148) and PATHOS (grant H2020 FET-OPEN-828946).

Author information

Affiliations

Authors

Contributions

A.B., A.T., P.B., L.P., A.K.T., R.T. and D.S.W. conceived the experiment. A.B., A.T. and P.B. conducted the experiment and analysed the results. A.B., A.T., L.P., A.K.T., R.T. and D.S.W. wrote the main manuscript text and A.B. prepared the figures. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Alice Boschetti or Diederik S. Wiersma.

Ethics declarations

Competing interests

The experimental apparatus and the analysis method are currently under patent filing (Italian priority application number 10201900014748).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and discussion.

Source data

Source Data Fig. 1

Graphs of the figures

Source Data Fig. 2

Graphs of the figures

Source Data Fig. 3

Camera images

Source Data Fig. 4

Graphs of the figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boschetti, A., Taschin, A., Bartolini, P. et al. Spectral super-resolution spectroscopy using a random laser. Nat. Photonics 14, 177–182 (2020). https://doi.org/10.1038/s41566-019-0558-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing