Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics


Optical quantum information processing will require highly efficient photonic circuits to connect quantum nodes on-chip and across long distances. This entails the efficient integration of optically addressable qubits into photonic circuits, as well as quantum frequency conversion to the telecommunications band. 4H-silicon carbide (4H-SiC) offers unique potential for on-chip quantum photonics, as it hosts a variety of promising colour centres and has a strong second-order optical nonlinearity. Here, we demonstrate within a single, monolithic platform the strong enhancement of emission from a colour centre and efficient optical frequency conversion. We develop a fabrication process for thin films of 4H-SiC, which are compatible with industry-standard, CMOS nanofabrication. This work provides a viable route towards industry-compatible, scalable colour-centre-based quantum technologies, including the monolithic generation and frequency conversion of quantum light on-chip.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Colour centres and photonics in 4H-SiCOI.
Fig. 2: Light–matter interaction of a single colour centre with a nanophotonic resonator.
Fig. 3: Efficient second-order frequency conversion in microring resonators.
Fig. 4: A conceptual diagram showing two applications that can be readily implemented with the 4H-SiCOI architecture.

Data availability

All data relevant to the current study are available from the corresponding author on request.


  1. 1.

    Lohrmann, A., Johnson, B. C., McCallum, J. C. & Castelletto, S. A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80, 034502 (2017).

    ADS  Article  Google Scholar 

  2. 2.

    Simin, D. et al. Locking of electron spin coherence above 20 ms in natural silicon carbide. Phys. Rev. B 95, 161201 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    Janzén, E. et al. The silicon vacancy in SiC. Physica B 404, 4354–4358 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Son, N. T. et al. Divacancy in 4H-SiC. Phys. Rev. Lett. 96, 055501 (2006).

    ADS  Article  Google Scholar 

  7. 7.

    Von Bardeleben, H. J., Cantin, J. L., Rauls, E. & Gerstmann, U. Identification and magneto-optical properties of the NV center in 4H-SiC. Phys. Rev. B 92, 064104 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Nagy, R. et al. High-fidelity spin and optical control of single silicon vacancy centres in silicon carbide. Nat. Commun. 10, 1954 (2019).

    ADS  Article  Google Scholar 

  9. 9.

    Nagy, R. et al. Quantum properties of dichroic silicon vacancies in silicon carbide. Phys. Rev. Appl. 9, 034022 (2018).

    ADS  Article  Google Scholar 

  10. 10.

    Banks, H. B. et al. Resonant optical spin initialization and readout of single silicon vacancies in 4H-SiC. Phys. Rev. Appl. 11, 024013 (2019).

    ADS  Article  Google Scholar 

  11. 11.

    Economou, S. E. & Dev, P. Spin–photon entanglement interfaces in silicon carbide defect centers. Nanotechnology 27, 504001 (2016).

    Article  Google Scholar 

  12. 12.

    Dong, W., Doherty, M. W. & Economou, S. E. Spin polarization through intersystem crossing in the silicon vacancy of silicon carbide. Phys. Rev. B 99, 184102 (2019).

    ADS  Article  Google Scholar 

  13. 13.

    Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).

    Google Scholar 

  14. 14.

    Von Bardeleben, H. J. et al. NV centers in 3C, 4H and 6H silicon carbide: a variable platform for solid-state qubits and nanosensors. Phys. Rev. B 94, 121202 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Simin, D. et al. All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide. Phys. Rev. X 6, 031014 (2016).

    Google Scholar 

  16. 16.

    Kraus, H. et al. Three-dimensional proton beam writing of optically active coherent vacancy spins in silicon carbide. Nano Lett. 17, 2865–2870 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Wang, J. et al. Efficient generation of an array of single silicon-vacancy defects in silicon carbide. Phys. Rev. Appl. 7, 064021 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Chen, Y.-C. et al. Laser writing of scalable single colour centre in silicon carbide. Nano Lett. 19, 2377–2382 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Sato, H., Abe, M., Shoji, I., Suda, J. & Kondo, T. Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide. J. Opt. Soc. Am. B 26, 1892–1896 (2009).

    ADS  Article  Google Scholar 

  23. 23.

    Martini, F. & Politi, A. Four wave mixing in 3C SiC ring resonators. Appl. Phys. Lett. 112, 251110 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Qian, X., Jiang, P. & Yang, R. Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance. Mater. Today Phys. 3, 70–75 (2017).

    Article  Google Scholar 

  25. 25.

    Karmann, S., Helbig, R. & Stein, R. A. Piezoelectric properties and elastic constants of 4H and 6H SiC at temperatures 4–320 K. J. Appl. Phys. 66, 3922 (1989).

    ADS  Article  Google Scholar 

  26. 26.

    Ye, W. N. & Xiong, Y. Review of silicon photonics: history and recent advances. J. Mod. Opt. 60, 1299–1320 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    Fan, T., Moradinejad, H., Wu, X., Eftekhar, A. & Adibi, A. High Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform. Opt. Express 26, 25814–25826 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Cardenas, J. et al. Optical nonlinearities in high-confinement silicon carbide waveguides. Opt. Lett. 40, 4138–4141 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Zheng, Y. et al. High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator. Opt. Express 27, 13053–13060 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    Bracher, D. O., Zhang, X. & Hu, E. L. Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center. Proc. Natl Acad. Sci. USA 114, 4060–4065 (2017).

    Article  Google Scholar 

  31. 31.

    Song, B.-S. et al. High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide. Appl. Phys. Lett. 113, 231106 (2018).

    Article  Google Scholar 

  32. 32.

    Radulaski, M. et al. Scalable quantum photonics with single color centers in silicon carbide. Nano Lett. 17, 1782–1786 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Magyar, A. P., Bracher, D., Lee, J. C., Aharonovich, I. & Hu, E. L. High quality SiC microdisk resonators fabricated from monolithic epilayer wafers. Appl. Phys. Lett. 104, 051109 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Lohrmann, A. et al. Integration of single-photon emitters into 3C-SiC microdisk resonators. ACS Photon. 4, 462–468 (2017).

    Article  Google Scholar 

  35. 35.

    Song, B.-S. et al. Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide. Optica 6, 991–995 (2019).

    ADS  Article  Google Scholar 

  36. 36.

    Pelc, J. S. et al. Long-wavelength-pumped upconversion single-photon detector at 1,550 nm: performance and noise analysis. Opt. Express 19, 21445–21456 (2011).

    ADS  Article  Google Scholar 

  37. 37.

    Rivoire, K. et al. Fast quantum dot single photon source triggered at telecommunications wavelength. Appl. Phys. Lett. 98, 083105 (2011).

    ADS  Article  Google Scholar 

  38. 38.

    Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Photon. Rev. 10, 870–894 (2016).

    Google Scholar 

  39. 39.

    McCutcheon, M. W., Chang, D. E., Zhang, Y., Lukin, M. D. & Lončar, M. Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity. Opt. Express 17, 22689–22703 (2009).

    ADS  Article  Google Scholar 

  40. 40.

    Wang, S. et al. 4H-SiC: a new nonlinear material for midinfrared lasers. Photon. Rev. 7, 831–838 (2013).

    Article  Google Scholar 

  41. 41.

    Dory, C. et al. Inverse-designed diamond photonics. Nat. Commun. 10, 3309 (2019).

    ADS  Article  Google Scholar 

  42. 42.

    Poshakinskiy, A. V. & Astakhov, G. V. Optically detected spin-mechanical resonance in silicon carbide membranes. Phys. Rev. B 100, 094104 (2019).

    ADS  Article  Google Scholar 

  43. 43.

    Whiteley, S. J. et al. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).

    Article  Google Scholar 

  44. 44.

    Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM—the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823 (2010).

    ADS  Article  Google Scholar 

  45. 45.

    Li, J., Lee, H., Yang, K. Y. & Vahala, K. J. Sideband spectroscopy and dispersion measurement in microcavities. Opt. Express 20, 26337–26344 (2012).

    ADS  Article  Google Scholar 

Download references


We thank S. Economou, W. Dong and R. Nagy for useful discussions. This research is funded in part by the Gordon and Betty Moore Foundation through grant no. GBMF 4743, the US Department of Energy, Office of Science, under award no. DE-SC0019174, and the National Science Foundation under grant number NSF/EFRI-1741660. Part of this work was performed at the Stanford Nanofabrication Facility (SNF) and the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award no. ECCS-1542152. D.M.L. acknowledges support from the Fong Stanford Graduate Fellowship (SGF) and the National Defense Science and Engineering Graduate Fellowship. C.D. acknowledges support from the Andreas Bechtolsheim SGF and the Microsoft Research PhD Fellowship. M.A.G. acknowledges support from the William R. Hewlett SGF and the NSF Graduate Research Fellowship, and K.Y.Y. from the Nano- and Quantum Science and Engineering Postdoctoral Fellowship. S.D.M. acknowledges support from the Soheil and Susan Saadat Graduate Fellowship. M.R. acknowledges support from the Nano- and Quantum Science and Engineering Postdoctoral Fellowship. G.H.A. acknowledges support from the STMicroelectronics SGF and Kwanjeong Educational Foundation Fellowship. R.T. acknowledges funding from Kailath SGF.

Author information




D.M.L., C.D., M.A.G. and J.V. conceived the experiment. D.M.L. and C.D. developed the material platform and the fabrication techniques. C.D., D.M.L., S.D.M., G.H.A. and S.S. conducted the quantum experiments. M.A.G., D.M.L., K.Y.Y. and C.D. performed nonlinear experiments. R.T., D.M.L. and M.R. performed cavity design and analysis. D.V. performed inverse design simulations. J.V. supervised the project. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Jelena Vučković.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukin, D.M., Dory, C., Guidry, M.A. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 14, 330–334 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing