4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics

Abstract

Optical quantum information processing will require highly efficient photonic circuits to connect quantum nodes on-chip and across long distances. This entails the efficient integration of optically addressable qubits into photonic circuits, as well as quantum frequency conversion to the telecommunications band. 4H-silicon carbide (4H-SiC) offers unique potential for on-chip quantum photonics, as it hosts a variety of promising colour centres and has a strong second-order optical nonlinearity. Here, we demonstrate within a single, monolithic platform the strong enhancement of emission from a colour centre and efficient optical frequency conversion. We develop a fabrication process for thin films of 4H-SiC, which are compatible with industry-standard, CMOS nanofabrication. This work provides a viable route towards industry-compatible, scalable colour-centre-based quantum technologies, including the monolithic generation and frequency conversion of quantum light on-chip.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Colour centres and photonics in 4H-SiCOI.
Fig. 2: Light–matter interaction of a single colour centre with a nanophotonic resonator.
Fig. 3: Efficient second-order frequency conversion in microring resonators.
Fig. 4: A conceptual diagram showing two applications that can be readily implemented with the 4H-SiCOI architecture.

Data availability

All data relevant to the current study are available from the corresponding author on request.

References

  1. 1.

    Lohrmann, A., Johnson, B. C., McCallum, J. C. & Castelletto, S. A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80, 034502 (2017).

  2. 2.

    Simin, D. et al. Locking of electron spin coherence above 20 ms in natural silicon carbide. Phys. Rev. B 95, 161201 (2017).

  3. 3.

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

  4. 4.

    Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

  5. 5.

    Janzén, E. et al. The silicon vacancy in SiC. Physica B 404, 4354–4358 (2009).

  6. 6.

    Son, N. T. et al. Divacancy in 4H-SiC. Phys. Rev. Lett. 96, 055501 (2006).

  7. 7.

    Von Bardeleben, H. J., Cantin, J. L., Rauls, E. & Gerstmann, U. Identification and magneto-optical properties of the NV center in 4H-SiC. Phys. Rev. B 92, 064104 (2015).

  8. 8.

    Nagy, R. et al. High-fidelity spin and optical control of single silicon vacancy centres in silicon carbide. Nat. Commun. 10, 1954 (2019).

  9. 9.

    Nagy, R. et al. Quantum properties of dichroic silicon vacancies in silicon carbide. Phys. Rev. Appl. 9, 034022 (2018).

  10. 10.

    Banks, H. B. et al. Resonant optical spin initialization and readout of single silicon vacancies in 4H-SiC. Phys. Rev. Appl. 11, 024013 (2019).

  11. 11.

    Economou, S. E. & Dev, P. Spin–photon entanglement interfaces in silicon carbide defect centers. Nanotechnology 27, 504001 (2016).

  12. 12.

    Dong, W., Doherty, M. W. & Economou, S. E. Spin polarization through intersystem crossing in the silicon vacancy of silicon carbide. Phys. Rev. B 99, 184102 (2019).

  13. 13.

    Christle, D. J. et al. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7, 021046 (2017).

  14. 14.

    Von Bardeleben, H. J. et al. NV centers in 3C, 4H and 6H silicon carbide: a variable platform for solid-state qubits and nanosensors. Phys. Rev. B 94, 121202 (2016).

  15. 15.

    Simin, D. et al. All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide. Phys. Rev. X 6, 031014 (2016).

  16. 16.

    Kraus, H. et al. Three-dimensional proton beam writing of optically active coherent vacancy spins in silicon carbide. Nano Lett. 17, 2865–2870 (2017).

  17. 17.

    Wang, J. et al. Efficient generation of an array of single silicon-vacancy defects in silicon carbide. Phys. Rev. Appl. 7, 064021 (2017).

  18. 18.

    Chen, Y.-C. et al. Laser writing of scalable single colour centre in silicon carbide. Nano Lett. 19, 2377–2382 (2018).

  19. 19.

    Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

  20. 20.

    Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

  21. 21.

    Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

  22. 22.

    Sato, H., Abe, M., Shoji, I., Suda, J. & Kondo, T. Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide. J. Opt. Soc. Am. B 26, 1892–1896 (2009).

  23. 23.

    Martini, F. & Politi, A. Four wave mixing in 3C SiC ring resonators. Appl. Phys. Lett. 112, 251110 (2018).

  24. 24.

    Qian, X., Jiang, P. & Yang, R. Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance. Mater. Today Phys. 3, 70–75 (2017).

  25. 25.

    Karmann, S., Helbig, R. & Stein, R. A. Piezoelectric properties and elastic constants of 4H and 6H SiC at temperatures 4–320 K. J. Appl. Phys. 66, 3922 (1989).

  26. 26.

    Ye, W. N. & Xiong, Y. Review of silicon photonics: history and recent advances. J. Mod. Opt. 60, 1299–1320 (2013).

  27. 27.

    Fan, T., Moradinejad, H., Wu, X., Eftekhar, A. & Adibi, A. High Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform. Opt. Express 26, 25814–25826 (2018).

  28. 28.

    Cardenas, J. et al. Optical nonlinearities in high-confinement silicon carbide waveguides. Opt. Lett. 40, 4138–4141 (2015).

  29. 29.

    Zheng, Y. et al. High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator. Opt. Express 27, 13053–13060 (2019).

  30. 30.

    Bracher, D. O., Zhang, X. & Hu, E. L. Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center. Proc. Natl Acad. Sci. USA 114, 4060–4065 (2017).

  31. 31.

    Song, B.-S. et al. High-Q-factor nanobeam photonic crystal cavities in bulk silicon carbide. Appl. Phys. Lett. 113, 231106 (2018).

  32. 32.

    Radulaski, M. et al. Scalable quantum photonics with single color centers in silicon carbide. Nano Lett. 17, 1782–1786 (2017).

  33. 33.

    Magyar, A. P., Bracher, D., Lee, J. C., Aharonovich, I. & Hu, E. L. High quality SiC microdisk resonators fabricated from monolithic epilayer wafers. Appl. Phys. Lett. 104, 051109 (2014).

  34. 34.

    Lohrmann, A. et al. Integration of single-photon emitters into 3C-SiC microdisk resonators. ACS Photon. 4, 462–468 (2017).

  35. 35.

    Song, B.-S. et al. Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide. Optica 6, 991–995 (2019).

  36. 36.

    Pelc, J. S. et al. Long-wavelength-pumped upconversion single-photon detector at 1,550 nm: performance and noise analysis. Opt. Express 19, 21445–21456 (2011).

  37. 37.

    Rivoire, K. et al. Fast quantum dot single photon source triggered at telecommunications wavelength. Appl. Phys. Lett. 98, 083105 (2011).

  38. 38.

    Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Photon. Rev. 10, 870–894 (2016).

  39. 39.

    McCutcheon, M. W., Chang, D. E., Zhang, Y., Lukin, M. D. & Lončar, M. Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity. Opt. Express 17, 22689–22703 (2009).

  40. 40.

    Wang, S. et al. 4H-SiC: a new nonlinear material for midinfrared lasers. Photon. Rev. 7, 831–838 (2013).

  41. 41.

    Dory, C. et al. Inverse-designed diamond photonics. Nat. Commun. 10, 3309 (2019).

  42. 42.

    Poshakinskiy, A. V. & Astakhov, G. V. Optically detected spin-mechanical resonance in silicon carbide membranes. Phys. Rev. B 100, 094104 (2019).

  43. 43.

    Whiteley, S. J. et al. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).

  44. 44.

    Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM—the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823 (2010).

  45. 45.

    Li, J., Lee, H., Yang, K. Y. & Vahala, K. J. Sideband spectroscopy and dispersion measurement in microcavities. Opt. Express 20, 26337–26344 (2012).

Download references

Acknowledgements

We thank S. Economou, W. Dong and R. Nagy for useful discussions. This research is funded in part by the Gordon and Betty Moore Foundation through grant no. GBMF 4743, the US Department of Energy, Office of Science, under award no. DE-SC0019174, and the National Science Foundation under grant number NSF/EFRI-1741660. Part of this work was performed at the Stanford Nanofabrication Facility (SNF) and the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award no. ECCS-1542152. D.M.L. acknowledges support from the Fong Stanford Graduate Fellowship (SGF) and the National Defense Science and Engineering Graduate Fellowship. C.D. acknowledges support from the Andreas Bechtolsheim SGF and the Microsoft Research PhD Fellowship. M.A.G. acknowledges support from the William R. Hewlett SGF and the NSF Graduate Research Fellowship, and K.Y.Y. from the Nano- and Quantum Science and Engineering Postdoctoral Fellowship. S.D.M. acknowledges support from the Soheil and Susan Saadat Graduate Fellowship. M.R. acknowledges support from the Nano- and Quantum Science and Engineering Postdoctoral Fellowship. G.H.A. acknowledges support from the STMicroelectronics SGF and Kwanjeong Educational Foundation Fellowship. R.T. acknowledges funding from Kailath SGF.

Author information

D.M.L., C.D., M.A.G. and J.V. conceived the experiment. D.M.L. and C.D. developed the material platform and the fabrication techniques. C.D., D.M.L., S.D.M., G.H.A. and S.S. conducted the quantum experiments. M.A.G., D.M.L., K.Y.Y. and C.D. performed nonlinear experiments. R.T., D.M.L. and M.R. performed cavity design and analysis. D.V. performed inverse design simulations. J.V. supervised the project. All authors discussed the results and contributed to the final manuscript.

Correspondence to Jelena Vučković.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukin, D.M., Dory, C., Guidry, M.A. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics (2019) doi:10.1038/s41566-019-0556-6

Download citation