Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Programmable linear quantum networks with a multimode fibre

Abstract

Reconfigurable quantum circuits are fundamental building blocks for the implementation of scalable quantum technologies. Their implementation has been pursued in linear optics through the engineering of sophisticated interferometers1,2,3. Although such optical networks have been successful in demonstrating the control of small-scale quantum circuits, scaling up to larger dimensions poses significant challenges4,5. Here, we demonstrate a potentially scalable route towards reconfigurable optical networks based on the use of a multimode fibre and advanced wavefront shaping techniques. We program networks involving spatial and polarization modes of the fibre and experimentally validate the accuracy and robustness of our approach using two-photon quantum states. In particular, we illustrate the reconfigurability of our platform by emulating a tunable coherent absorption experiment6. By demonstrating reliable reprogrammable linear transformations, with the prospect to scale, our results highlight the potential of complex media driven by wavefront shaping for quantum information processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: MMF-based programmable linear optical network.
Fig. 2: Control of two-photon interference among spatial-polarization degrees of freedom.
Fig. 3: Controlled coherent absorption.
Fig. 4: Intensity image of a high-dimensional linear optical network on the EMCCD.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes for data analysis and simulation that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    ADS  Article  Google Scholar 

  2. 2.

    Matthews, J. C. F., Politi, A., Stefanov, A. & O’Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346–350 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    MathSciNet  Article  Google Scholar 

  4. 4.

    Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2019).

    ADS  Article  Google Scholar 

  5. 5.

    Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018).

    ADS  Article  Google Scholar 

  6. 6.

    Baranov, D. G., Krasnok, A., Shegai, T., Alù, A. & Chong, Y. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Peruzzo, A., Laing, A., Politi, A., Rudolph, T. & O’Brien, J. L. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224 (2011).

    ADS  Article  Google Scholar 

  8. 8.

    Poem, E., Gilead, Y. & Silberberg, Y. Two-photon path-entangled states in multimode waveguides. Phys. Rev. Lett. 108, 153602 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Feng, L.-T. et al. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat. Commun. 7, 11985 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Mohanty, A. et al. Quantum interference between transverse spatial waveguide modes. Nat. Commun. 8, 14010 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Xu, Q., Chen, L., Wood, M. G., Sun, P. & Reano, R. M. Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase. Nat. Commun. 5, 5337 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009).

    Article  Google Scholar 

  14. 14.

    Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Morizur, J.-F. et al. Programmable unitary spatial mode manipulation. J. Opt. Soc. Am. A 27, 2524–2531 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Fickler, R., Ginoya, M. & Boyd, R. W. Custom-tailored spatial mode sorting by controlled random scattering. Phys. Rev. B 95, 161108 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Wang, Y., Potoček, V., Barnett, S. M. & Feng, X. Programmable holographic technique for implementing unitary and nonunitary transformations. Phys. Rev. A 95, 033827 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Defienne, H., Reichert, M. & Fleischer, J. W. Adaptive quantum optics with spatially entangled photon pairs. Phys. Rev. Lett. 121, 233601 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Huisman, S. R., Huisman, T. J., Goorden, S. A., Mosk, A. P. & Pinkse, P. W. H. Programming balanced optical beam splitters in white paint. Opt. Express 22, 8320 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Huisman, S. R., Huisman, T. J., Wolterink, T. A. W., Mosk, A. P. & Pinkse, P. W. H. Programmable multiport optical circuits in opaque scattering materials. Opt. Express 23, 3102–3116 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Wolterink, T. A. W. et al. Programmable two-photon quantum interference in 103 channels in opaque scattering media. Phys. Rev. A 93, 053817 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Defienne, H., Barbieri, M., Walmsley, I. A., Smith, B. J. & Gigan, S. Two-photon quantum walk in a multimode fiber. Sci. Adv. 2, e1501054 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Crespi, A. et al. Suppression law of quantum states in a 3D photonic fast fourier transform chip. Nat. Commun. 7, 10469 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Viggianiello, N. et al. Experimental generalized quantum suppression law in Sylvester interferometers. New J. Phys. 20, 033017 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Tichy, M. C. Interference of identical particles from entanglement to boson-sampling. J. Phys. B 47, 103001 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Dittel, C. et al. Totally destructive interference for permutation-symmetric many-particle states. Phys. Rev. Lett. 120, 240404 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Roger, T. et al. Coherent absorption of N00N states. Phys. Rev. Lett. 117, 023601 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Vest, B. et al. Plasmonic interferences of two-particle N00N states. New J. Phys. 20, 053050 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Lyons, A. et al. Coherent metamaterial absorption of two-photon states with 40% efficiency. Phys. Rev. A 99, 011801 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    Xomalis, A. et al. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun. 9, 182 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Defienne, H., Reichert, M. & Fleischer, J. W. General model of photon-pair detection with an image sensor. Phys. Rev. Lett. 120, 203604 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Moretti for technical support. The work is supported by the European Research Council (ERC) (724473). S.G. is a member of the Institut Universitaire de France (IUF). M.P. is supported by the European Commission through the H2020 Collaborative project ‘Testing the large-scale limit of quantum mechanics’ (TEQ, grant no. 766900), the Science Foundation Ireland–Department for Economy Investigator Programme ‘Quantum control of nanostructures for quantum networking’ (QuNaNet, grant no. 15/IA/2864), the Leverhulme Trust through the Research Project Grant ‘Ultracold quantum thermo-machine’ (UltraQuTe, grant no. RGP-2018-266), MSCA co-funding of regional, national and international programmes (grant no. 754507) and COST Action CA15220 ‘Quantum technologies in space (QTSpace)’. L.I. acknowledges partial support from Fondazione Angelo Della Riccia. T.J. was supported by a Human Frontier Science Program Cross-Disciplinary Fellowship (LT000345/2016-C), and ERC (758752). S.L. acknowledges support from a Franco-Thai Scholarship.

Author information

Affiliations

Authors

Contributions

S.L., T.J. and H.D. carried out the experiment and analysis of the data. S.L. and L.I. performed numerical simulations and L.I., A.F. and M.P. provided a theoretical analysis of the results. S.L. proposed the coherent absorption experiment. S.G. proposed the original idea and supervised the project. All authors discussed the implementation, the experimental data and the results. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Sylvain Gigan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leedumrongwatthanakun, S., Innocenti, L., Defienne, H. et al. Programmable linear quantum networks with a multimode fibre. Nat. Photonics 14, 139–142 (2020). https://doi.org/10.1038/s41566-019-0553-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing