Programmable linear quantum networks with a multimode fibre


Reconfigurable quantum circuits are fundamental building blocks for the implementation of scalable quantum technologies. Their implementation has been pursued in linear optics through the engineering of sophisticated interferometers1,2,3. Although such optical networks have been successful in demonstrating the control of small-scale quantum circuits, scaling up to larger dimensions poses significant challenges4,5. Here, we demonstrate a potentially scalable route towards reconfigurable optical networks based on the use of a multimode fibre and advanced wavefront shaping techniques. We program networks involving spatial and polarization modes of the fibre and experimentally validate the accuracy and robustness of our approach using two-photon quantum states. In particular, we illustrate the reconfigurability of our platform by emulating a tunable coherent absorption experiment6. By demonstrating reliable reprogrammable linear transformations, with the prospect to scale, our results highlight the potential of complex media driven by wavefront shaping for quantum information processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: MMF-based programmable linear optical network.
Fig. 2: Control of two-photon interference among spatial-polarization degrees of freedom.
Fig. 3: Controlled coherent absorption.
Fig. 4: Intensity image of a high-dimensional linear optical network on the EMCCD.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes for data analysis and simulation that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

  2. 2.

    Matthews, J. C. F., Politi, A., Stefanov, A. & O’Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346–350 (2009).

  3. 3.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

  4. 4.

    Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2019).

  5. 5.

    Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018).

  6. 6.

    Baranov, D. G., Krasnok, A., Shegai, T., Alù, A. & Chong, Y. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017).

  7. 7.

    Peruzzo, A., Laing, A., Politi, A., Rudolph, T. & O’Brien, J. L. Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224 (2011).

  8. 8.

    Poem, E., Gilead, Y. & Silberberg, Y. Two-photon path-entangled states in multimode waveguides. Phys. Rev. Lett. 108, 153602 (2012).

  9. 9.

    Feng, L.-T. et al. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat. Commun. 7, 11985 (2016).

  10. 10.

    Mohanty, A. et al. Quantum interference between transverse spatial waveguide modes. Nat. Commun. 8, 14010 (2017).

  11. 11.

    Wang, K. et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018).

  12. 12.

    Xu, Q., Chen, L., Wood, M. G., Sun, P. & Reano, R. M. Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase. Nat. Commun. 5, 5337 (2014).

  13. 13.

    Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009).

  14. 14.

    Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).

  15. 15.

    Morizur, J.-F. et al. Programmable unitary spatial mode manipulation. J. Opt. Soc. Am. A 27, 2524–2531 (2010).

  16. 16.

    Fickler, R., Ginoya, M. & Boyd, R. W. Custom-tailored spatial mode sorting by controlled random scattering. Phys. Rev. B 95, 161108 (2017).

  17. 17.

    Wang, Y., Potoček, V., Barnett, S. M. & Feng, X. Programmable holographic technique for implementing unitary and nonunitary transformations. Phys. Rev. A 95, 033827 (2017).

  18. 18.

    Defienne, H., Reichert, M. & Fleischer, J. W. Adaptive quantum optics with spatially entangled photon pairs. Phys. Rev. Lett. 121, 233601 (2018).

  19. 19.

    Huisman, S. R., Huisman, T. J., Goorden, S. A., Mosk, A. P. & Pinkse, P. W. H. Programming balanced optical beam splitters in white paint. Opt. Express 22, 8320 (2014).

  20. 20.

    Huisman, S. R., Huisman, T. J., Wolterink, T. A. W., Mosk, A. P. & Pinkse, P. W. H. Programmable multiport optical circuits in opaque scattering materials. Opt. Express 23, 3102–3116 (2015).

  21. 21.

    Wolterink, T. A. W. et al. Programmable two-photon quantum interference in 103 channels in opaque scattering media. Phys. Rev. A 93, 053817 (2016).

  22. 22.

    Defienne, H., Barbieri, M., Walmsley, I. A., Smith, B. J. & Gigan, S. Two-photon quantum walk in a multimode fiber. Sci. Adv. 2, e1501054 (2016).

  23. 23.

    Crespi, A. et al. Suppression law of quantum states in a 3D photonic fast fourier transform chip. Nat. Commun. 7, 10469 (2016).

  24. 24.

    Viggianiello, N. et al. Experimental generalized quantum suppression law in Sylvester interferometers. New J. Phys. 20, 033017 (2018).

  25. 25.

    Tichy, M. C. Interference of identical particles from entanglement to boson-sampling. J. Phys. B 47, 103001 (2014).

  26. 26.

    Dittel, C. et al. Totally destructive interference for permutation-symmetric many-particle states. Phys. Rev. Lett. 120, 240404 (2018).

  27. 27.

    Roger, T. et al. Coherent absorption of N00N states. Phys. Rev. Lett. 117, 023601 (2016).

  28. 28.

    Vest, B. et al. Plasmonic interferences of two-particle N00N states. New J. Phys. 20, 053050 (2018).

  29. 29.

    Lyons, A. et al. Coherent metamaterial absorption of two-photon states with 40% efficiency. Phys. Rev. A 99, 011801 (2019).

  30. 30.

    Xomalis, A. et al. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun. 9, 182 (2018).

  31. 31.

    Defienne, H., Reichert, M. & Fleischer, J. W. General model of photon-pair detection with an image sensor. Phys. Rev. Lett. 120, 203604 (2018).

  32. 32.

    Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011).

Download references


We thank C. Moretti for technical support. The work is supported by the European Research Council (ERC) (724473). S.G. is a member of the Institut Universitaire de France (IUF). M.P. is supported by the European Commission through the H2020 Collaborative project ‘Testing the large-scale limit of quantum mechanics’ (TEQ, grant no. 766900), the Science Foundation Ireland–Department for Economy Investigator Programme ‘Quantum control of nanostructures for quantum networking’ (QuNaNet, grant no. 15/IA/2864), the Leverhulme Trust through the Research Project Grant ‘Ultracold quantum thermo-machine’ (UltraQuTe, grant no. RGP-2018-266), MSCA co-funding of regional, national and international programmes (grant no. 754507) and COST Action CA15220 ‘Quantum technologies in space (QTSpace)’. L.I. acknowledges partial support from Fondazione Angelo Della Riccia. T.J. was supported by a Human Frontier Science Program Cross-Disciplinary Fellowship (LT000345/2016-C), and ERC (758752). S.L. acknowledges support from a Franco-Thai Scholarship.

Author information

S.L., T.J. and H.D. carried out the experiment and analysis of the data. S.L. and L.I. performed numerical simulations and L.I., A.F. and M.P. provided a theoretical analysis of the results. S.L. proposed the coherent absorption experiment. S.G. proposed the original idea and supervised the project. All authors discussed the implementation, the experimental data and the results. All authors contributed to writing the manuscript.

Correspondence to Sylvain Gigan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leedumrongwatthanakun, S., Innocenti, L., Defienne, H. et al. Programmable linear quantum networks with a multimode fibre. Nat. Photonics (2019).

Download citation