Optimal wave fields for micromanipulation in complex scattering environments

Abstract

The manipulation of small objects with light has become an indispensable tool in many areas of research, ranging from physics to biology and medicine1,2,3,4,5,6,7. Here, we demonstrate how to implement micromanipulation at the optimal level of efficiency for arbitrarily shaped targets and inside complex environments such as disordered media. Our approach is to design wavefronts in the far field8,9,10,11,12,13,14,15 with optimal properties in the near field of the target to apply the strongest possible force, pressure or torque as well as to achieve the most efficient focus inside the target. This non-iterative technique only relies on a simple eigenvalue problem established from the system’s scattering matrix and its dependence on small shifts in specific target parameters (access to the near field of the target is not required). To illustrate this concept, we perform a proof-of-principle experiment in the microwave regime, fully confirming our predictions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental set-up.
Fig. 2: Optimal transfer of angular momentum.
Fig. 3: Focusing with the GWS operator.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

References

  1. 1.

    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  Google Scholar 

  2. 2.

    Thalhammer, G., Steiger, R., Bernet, S. & Ritsch-Marte, M. Optical macro-tweezers: trapping of highly motile micro-organisms. J. Opt. 13, 044024 (2011).

    ADS  Google Scholar 

  3. 3.

    Bowman, R. et al. Position clamping in a holographic counterpropagating optical trap. Opt. Express 19, 9908–9914 (2011).

    ADS  Google Scholar 

  4. 4.

    Jannasch, A., Mahamdeh, M. & Schäffer, E. Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise. Phys. Rev. Lett. 107, 228301 (2011).

    ADS  Google Scholar 

  5. 5.

    Palima, D. & Glückstad, J. Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photon. Rev. 7, 478–494 (2013).

    ADS  Google Scholar 

  6. 6.

    Kheifets, S., Simha, A., Melin, K., Li, T. & Raizen, M. G. Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343, 1493–1496 (2014).

    ADS  Google Scholar 

  7. 7.

    Li, T. in Fundamental Tests of Physics with Optically Trapped Microspheres 81–110 (Springer, 2013).

  8. 8.

    Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Google Scholar 

  9. 9.

    van Putten, E. G. et al. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011).

    ADS  Google Scholar 

  10. 10.

    Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photon. 5, 154–157 (2011).

    ADS  Google Scholar 

  11. 11.

    Dholakia, K. & Čižmár, T. Shaping the future of manipulation. Nat. Photon. 5, 335–342 (2011).

    ADS  Google Scholar 

  12. 12.

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    ADS  Google Scholar 

  13. 13.

    Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nat. Photon. 7, 300–305 (2013).

    ADS  Google Scholar 

  14. 14.

    Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

    ADS  Google Scholar 

  15. 15.

    Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).

    ADS  Google Scholar 

  16. 16.

    Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nat. Photon. 4, 388–394 (2010).

    ADS  Google Scholar 

  17. 17.

    Polin, M., Ladavac, K., Lee, S.-H., Roichman, Y. & Grier, D. G. Optimized holographic optical traps. Opt. Express 13, 5831–5845 (2005).

    ADS  Google Scholar 

  18. 18.

    Taylor, M. A., Waleed, M., Stilgoe, A. B., Rubinsztein-Dunlop, H. & Bowen, W. P. Enhanced optical trapping via structured scattering. Nat. Photon. 9, 669–673 (2015).

    ADS  Google Scholar 

  19. 19.

    Lee, Y. E., Miller, O. D., Homer Reid, M. T., Johnson, S. G. & Fang, N. X. Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque. Opt. Express 25, 6757–6766 (2017).

    ADS  Google Scholar 

  20. 20.

    Mazilu, M., Baumgartl, J., Kosmeier, S. & Dholakia, K. Optical Eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions. Opt. Express 19, 933–945 (2011).

    ADS  Google Scholar 

  21. 21.

    Fernandez-Corbaton, I. & Rockstuhl, C. Unified theory to describe and engineer conservation laws in light-matter interactions. Phys. Rev. A 95, 053829 (2017).

    ADS  Google Scholar 

  22. 22.

    Liu, Y. et al. Optimal nanoparticle forces, torques, and illumination fields. ACS Photon. 6, 395–402 (2019).

    Google Scholar 

  23. 23.

    Taylor, M. A. Optimizing phase to enhance optical trap stiffness. Sci. Rep. 7, 555 (2017).

    ADS  Google Scholar 

  24. 24.

    Wigner, E. P. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145–147 (1955).

    ADS  MathSciNet  MATH  Google Scholar 

  25. 25.

    Smith, F. T. Lifetime matrix in collision theory. Phys. Rev. 118, 349–356 (1960).

    ADS  MathSciNet  MATH  Google Scholar 

  26. 26.

    Fan, S. & Kahn, J. M. Principal modes in multimode waveguides. Opt. Lett. 30, 135–137 (2005).

    ADS  Google Scholar 

  27. 27.

    Winful, H. G. Delay time and the Hartman effect in quantum tunneling. Phys. Rev. Lett. 91, 260401 (2003).

    ADS  Google Scholar 

  28. 28.

    Rotter, S., Ambichl, P. & Libisch, F. Generating particlelike scattering states in wave transport. Phys. Rev. Lett. 106, 120602 (2011).

    ADS  Google Scholar 

  29. 29.

    Carpenter, J., Eggleton, B. J. & Schröder, J. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nat. Photon. 9, 751–757 (2015).

    ADS  Google Scholar 

  30. 30.

    Xiong, W. et al. Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling. Phys. Rev. Lett. 117, 053901 (2016).

    ADS  Google Scholar 

  31. 31.

    Gérardin, B. et al. Particlelike wave packets in complex scattering systems. Phys. Rev. B 94, 014209 (2016).

    ADS  Google Scholar 

  32. 32.

    Böhm, J., Brandstötter, A., Ambichl, P., Rotter, S. & Kuhl, U. In situ realization of particlelike scattering states in a microwave cavity. Phys. Rev. A 97, 021801 (2018).

    ADS  Google Scholar 

  33. 33.

    Brandstötter, A., Girschik, A. & Ambichl, P. & Rotter, S. Shaping the branched flow of light through disordered media. Proc. Natl Acad. Sci. USA 116, 13260–13265 (2019).

    ADS  Google Scholar 

  34. 34.

    Ambichl, P. et al. Focusing inside disordered media with the generalized Wigner-Smith operator. Phys. Rev. Lett. 119, 033903 (2017).

    ADS  Google Scholar 

  35. 35.

    Fyodorov, Y. V. & Sommers, H.-J. Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance. J. Math. Phys. 38, 1918–1981 (1997).

    ADS  MathSciNet  MATH  Google Scholar 

  36. 36.

    Brandbyge, M. & Tsukada, M. Local density of states from transmission amplitudes in multichannel systems. Phys. Rev. B 57, R15088–R15091 (1998).

    ADS  Google Scholar 

  37. 37.

    Davy, M., Shi, Z., Wang, J., Cheng, X. & Genack, A. Z. Transmission eigenchannels and the densities of states of random media. Phys. Rev. Lett. 114, 033901 (2015).

    ADS  Google Scholar 

  38. 38.

    Cheng, X. & Genack, A. Z. Focusing and energy deposition inside random media. Opt. Lett. 39, 6324–6327 (2014).

    ADS  Google Scholar 

  39. 39.

    Zhou, E. H., Ruan, H., Yang, C. & Judkewitz, B. Focusing on moving targets through scattering samples. Optica 1, 227–232 (2014).

    ADS  Google Scholar 

  40. 40.

    Ma, C., Xu, X., Liu, Y. & Wang, L. V. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nat. Photon. 8, 931–936 (2014).

    ADS  Google Scholar 

  41. 41.

    Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).

    ADS  MathSciNet  Google Scholar 

  42. 42.

    Drémeau, A. et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23, 11898–11911 (2015).

    ADS  Google Scholar 

  43. 43.

    Kotar, J. et al. Optimal hydrodynamic synchronization of colloidal rotors. Phys. Rev. Lett. 111, 228103 (2013).

    ADS  Google Scholar 

  44. 44.

    Ruan, H. et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica 4, 1337–1343 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Ambichl, N. Bachelard, H. Cao, S. Gigan, J. Hüpfl, F. Libisch, O. D. Miller and D. B. Phillips for stimulating discussions, and L. Kogler for helpful advice on NGSolve. The simulations were carried out in part on the Vienna Scientific Cluster (VSC). M.K., A.B., K.P. and S.R. were partly supported by the European Commission under project NHQWAVE No. MSCA-RISE 691209 and by the Austrian Science Fund (FWF) under project number P32300 (WAVELAND). A.B. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at the Institute for Theoretical Physics of the Vienna University of Technology (TU Wien). The experiments were carried out in Nice during a long-term visit of K.P. and were supported by the European Commission’s H2020 programme through the Open Future Emerging Technology Project ‘NEMF21’ (664828).

Author information

Affiliations

Authors

Contributions

The theoretical and numerical analysis was carried out by M.H., M.K. and A.B. under the supervision of S.R., whereas Y.V.F. contributed to the derivation of equation (2). Measurements and data evaluation were carried out by K.P. under the supervision of U.K. M.H. and S.R. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Ulrich Kuhl or Stefan Rotter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horodynski, M., Kühmayer, M., Brandstötter, A. et al. Optimal wave fields for micromanipulation in complex scattering environments. Nat. Photonics 14, 149–153 (2020). https://doi.org/10.1038/s41566-019-0550-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing