Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrated gallium phosphide nonlinear photonics

Abstract

Gallium phosphide (GaP) is an indirect-bandgap semiconductor used widely in solid-state lighting. Despite numerous intriguing optical properties—including large χ(2) and χ(3) coefficients, a high refractive index (>3) and transparency from visible to long-infrared wavelengths (0.55–11 μm)—its application as an integrated photonics material has been little studied. Here, we introduce GaP-on-insulator as a platform for nonlinear photonics, exploiting a direct wafer-bonding approach to realize integrated waveguides with 1.2 dB cm−1 loss in the telecommunications C-band (on par with Si-on-insulator). High-quality (Q > 105), grating-coupled ring resonators are fabricated and studied. Employing a modulation transfer approach, we obtain a direct experimental estimate of the nonlinear index of GaP at telecommunication wavelengths: n2 = 1.1(3) × 10−17 m2 W−1. We also observe Kerr frequency comb generation in resonators with engineered dispersion. Parametric threshold powers as low as 3 mW are realized, followed by broadband (>100 nm) frequency combs with sub-THz spacing, frequency-doubled combs and, in a separate device, efficient Raman lasing. These results signal the emergence of GaP-on-insulator as a novel platform for integrated nonlinear photonics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: GaP as a material for integrated nonlinear photonics.
Fig. 2: GaP waveguide resonators.
Fig. 3: Linear and nonlinear response of a GaP microresonator.
Fig. 4: GaP microresonator frequency combs.

Data availability

Data supporting the plots within this paper and other findings of this study are available through Zenodo at https://doi.org/10.5281/zenodo.3371313. Further information is available from the corresponding authors upon reasonable request.

Code availability

Simulation code supporting the plots within this paper and other findings of this study are available through Zenodo at https://doi.org/10.5281/zenodo.3371313. Further information is available from the corresponding authors upon reasonable request.

References

  1. 1.

    Pilkuhn, M. & Foster, L. Green luminescence from solution-grown junctions in gap containing shallow donors and acceptors. IBM J. Res. Dev. 10, 122–129 (1966).

    Article  Google Scholar 

  2. 2.

    Mori, H., Ogasawara, M., Yamamoto, M. & Tachikawa, M. New hydride vapor phase epitaxy for gap growth on Si. Appl. Phys. Lett. 51, 1245–1247 (1987).

    ADS  Article  Google Scholar 

  3. 3.

    Rivoire, K., Lin, Z., Hatami, F., Masselink, W. T. & Vučković, J. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. Opt. Exp. 17, 22609–22615 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    Lake, D. P. et al. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks. Appl. Phys. Lett. 108, 031109 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Cambiasso, J. et al. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas. Nano Lett. 17, 1219–1225 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    González-Tudela, A., Hung, C.-L., Chang, D. E., Cirac, J. I. & Kimble, H. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nat. Phot. 9, 320–325 (2015).

    Article  Google Scholar 

  7. 7.

    Englund, D. et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    Gould, M., Schmidgall, E. R., Dadgostar, S., Hatami, F. & Fu, K.-M. C. Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform. Phys. Rev. Appl. 6, 011001 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Schneider, K. et al. Optomechanics with one-dimensional gallium phosphide photonic crystal cavities. Optica 6, 577–584 (2019).

    ADS  Article  Google Scholar 

  10. 10.

    Gan, X., Pervez, N., Kymissis, I., Hatami, F. & Englund, D. A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array. Appl. Phys. Lett. 100, 231104 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Rivoire, K., Faraon, A. & Vuckovic, J. Gallium phosphide photonic crystal nanocavities in the visible. Appl. Phys. Lett. 93, 063103 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    Barclay, P. E., Fu, K.-M. C., Santori, C. & Beausoleil, R. G. Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. Appl. Phys. Lett. 95, 191115 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    Mitchell, M., Hryciw, A. C. & Barclay, P. E. Cavity optomechanics in gallium phosphide microdisks. Appl. Phys. Lett. 104, 141104 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Guillemé, P. et al. Second harmonic generation in gallium phosphide microdisks on silicon: from strict \(\bar 4\) to random quasi-phase matching. Semicond. Sci. Technol. 32, 065004 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Thomas, N., Barbour, R. J., Song, Y., Lee, M. L. & Fu, K.-M. C. Waveguide-integrated single-crystalline GaP resonators on diamond. Opt. Exp. 22, 13555–13564 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Schneider, K. et al. Gallium phosphide-on-silicon dioxide photonic devices. J. Lightwave Technol. 36, 2994–3002 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Liu, F. et al. Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1,040 nm. J. Opt. 12, 095201 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Martin, A. et al. Nonlinear gallium phosphide nanoscale photonics. Phot. Res. 6, B43–B49 (2018).

    Article  Google Scholar 

  19. 19.

    Skryabin, D. V. & Gorbach, A. V. Colloquium: looking at a soliton through the prism of optical supercontinuum. Rev. Mod. Phys. 82, 1287 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    Halir, R. et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett. 37, 1685–1687 (2012).

    ADS  Article  Google Scholar 

  21. 21.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Phot. 8, 145–152 (2014).

    Article  Google Scholar 

  24. 24.

    Hönl, S., Hahn, H., Baumgartner, Y., Czornomaz, L. & Seidler, P. Highly selective dry etching of GaP in the presence of AlxGa1 – xP with a SiCl4/SF6 plasma. J. Phys. D Appl. Phys. 51, 185203 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Rokhsari, H. & Vahala, K. J. Observation of Kerr nonlinearity in microcavities at room temperature. Opt. Lett. 30, 427–429 (2005).

    ADS  Article  Google Scholar 

  28. 28.

    Kippenberg, T., Spillane, S. & Vahala, K. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    ADS  Article  Google Scholar 

  29. 29.

    Chembo, Y. K. & Yu, N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82, 033801 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    Xue, X. et al. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl. 6, e16253 (2017).

    Article  Google Scholar 

  31. 31.

    Herr, T. Solitons and Dynamics of Frequency Comb Formation in Optical Microresonators. PhD thesis, École Polytechnique Fédérale de Lausanne (2013).

  32. 32.

    Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012).

    ADS  Article  Google Scholar 

  33. 33.

    Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Brasch, V., Geiselmann, M., Pfeiffer, M. H. & Kippenberg, T. J. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Exp. 24, 29312–29320 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Gong, Z. et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett. 43, 4366–4369 (2018).

    ADS  Article  Google Scholar 

  36. 36.

    Jung, H., Stoll, R., Guo, X., Fischer, D. & Tang, H. X. Green, red and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 1, 396–399 (2014).

    ADS  Article  Google Scholar 

  37. 37.

    Guo, X., Zou, C.-L. & Tang, H. X. Second-harmonic generation in aluminum nitride microrings with 2,500%/W conversion efficiency. Optica 3, 1126–1131 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Min, B., Yang, L. & Vahala, K. Controlled transition between parametric and Raman oscillations in ultrahigh-Q silica toroidal microcavities. Appl. Phys. Lett. 87, 181109 (2005).

    ADS  Article  Google Scholar 

  39. 39.

    Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation. Opt. Lett. 42, 2786–2789 (2017).

    Article  Google Scholar 

  40. 40.

    Saito, T., Suto, K., Nishizawa, J.-i & Kawasaki, M. Spontaneous Raman scattering in [100], [110] and [11–2] directional gap waveguides. J. App. Phys. 90, 1831–1835 (2001).

    ADS  Article  Google Scholar 

  41. 41.

    Briles, T. C. et al. Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. Opt. Lett. 43, 2933–2936 (2018).

    ADS  Article  Google Scholar 

  42. 42.

    Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954–2956 (2003).

    ADS  Article  Google Scholar 

  43. 43.

    Hausmann, B., Bulu, I., Venkataraman, V., Deotare, P. & Lončar, M. Diamond nonlinear photonics. Nat. Photon. 8, 369–374 (2014).

    ADS  Article  Google Scholar 

  44. 44.

    Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).

    ADS  Article  Google Scholar 

  45. 45.

    Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photon. 4, 41–45 (2010).

    ADS  Article  Google Scholar 

  47. 47.

    Lu, X., Lee, J. Y., Rogers, S. & Lin, Q. Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Exp. 22, 30826–30832 (2014).

    ADS  Article  Google Scholar 

  48. 48.

    Sun, C.-K., Chu, S.-W., Keller, S. & DenBaars, S. Third harmonic generation microscopy of GaN. In 2000 International Quantum Electronics Conference Digest QMC4 (IEEE, 2000).

  49. 49.

    Ching, W. & Huang, M.-Z. Calculation of optical excitations in cubic semiconductors. III. Third-harmonic generation. Phys. Rev. B 47, 9479 (1993).

    ADS  Article  Google Scholar 

  50. 50.

    Martin, A., Sanchez, D., Combrié, S., De Rossi, A. & Raineri, F. GaInP on oxide nonlinear photonic crystal technology. Opt. Lett. 42, 599–602 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Hurlbut, W. C., Lee, Y.-S., Vodopyanov, K., Kuo, P. & Fejer, M. Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared. Opt. Lett. 32, 668–670 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Welter, H. Hahn, U. Drechsler, D. Caimi and A. Olziersky for their valuable contributions to development of the GaP-on-insulator platform. We also thank M. Karpov and T. Herr for useful discussions about frequency comb generation. This work was supported by the European Union’s Horizon 2020 Programme for Research and Innovation under grants 722923 (Marie Curie H2020-ETN OMT) and 732894 (FET Proactive HOT). All samples were fabricated at the Binnig and Rohrer Nanotechnology Center (BRNC) at IBM Research – Zurich.

Author information

Affiliations

Authors

Contributions

K.S. and P.S. developed the GaP-on-insulator platform with support from S.H., Y.B. and L.C. S.H. fabricated all devices used in the reported experiments, took SEM and atomic force microscopy images and performed Raman measurements. D.J.W. conducted microresonator experiments and analysed data with support from K.S., S.H., M.A. and P.S. M.A. carried out all numerical simulations for the project, in addition to providing general theory support. D.J.W. wrote the manuscript with support from all co-authors. T.J.K. guided the investigation of frequency combs. P.S. conceived and oversaw the project.

Corresponding authors

Correspondence to Tobias J. Kippenberg or Paul Seidler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilson, D.J., Schneider, K., Hönl, S. et al. Integrated gallium phosphide nonlinear photonics. Nat. Photonics 14, 57–62 (2020). https://doi.org/10.1038/s41566-019-0537-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing