Abstract
Quantitative phase imaging (QPI) of transparent samples plays an essential role in multiple biomedical applications, and miniaturizing these systems will enable their adoption into point-of-care and in vivo applications. Here, we propose a compact quantitative phase gradient microscope (QGPM) based on two dielectric metasurface layers, inspired by a classical differential interference contrast (DIC) microscope. Owing to the multifunctionality and compactness of the dielectric metasurfaces, the QPGM simultaneously captures three DIC images to generate a quantitative phase gradient image in a single shot. The volume of the metasurface optical system is on the order of 1 mm3. Imaging experiments with various phase resolution samples verify the capability to capture quantitative phase gradient data, with phase gradient sensitivity better than 92.3 mrad μm−1 and single-cell resolution. The results showcase the potential of metasurfaces for developing miniaturized QPI systems for label-free cellular imaging and point-of-care devices.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author upon request.
References
Zernike, F. How I discovered phase contrast. Science 121, 345–349 (1955).
Lang, W. Nomarski Differential Interference-Contrast Microscopy (Carl Zeiss, 1982).
Popescu, G. Quantitative Phase Imaging of Cells and Tissues (McGraw Hill, 2011).
Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photon. 12, 578–589 (2018).
Alford, R. et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol. Imaging 8, 341–354 (2009).
Lee, K. et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors 13, 4170–4191 (2013).
Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005).
Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007).
Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photon. 8, 256–263 (2014).
Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photon. 7, 739–745 (2013).
Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med. 6, 267ra175 (2014).
Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).
Helmchen, F., Fee, M. S., Tank, D. W. & Denk, W. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).
Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).
Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).
Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).
Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081–1083 (1998).
Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).
Zhan, A. et al. Low-contrast dielectric metasurface optics. ACS Photon. 3, 209–214 (2016).
Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).
Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017).
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).
Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).
Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016).
Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).
Shi, Z. et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett. 7, 041056 (2017).
Arbabi, E. et al. Two-photon microscopy with a double-wavelength metasurface objective lens. Nano Lett. 18, 4943–4948 (2018).
Zhu, A. Y. et al. Compact aberration-corrected spectrometers in the visible using dispersion-tailored metasurfaces. Adv. Opt. Mater. 7, 1801144 (2018).
Faraji-Dana., M. et al. Compact folded metasurface spectrometer. Nat. Commun. 9, 4196 (2018).
Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photon. 12, 540–547 (2018).
Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).
Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photon. 11, 415–420 (2017).
Avayu, O., Almeida, E., Prior, Y. & Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017).
Zhou, Y. et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett. 18, 7529–7537 (2018).
Guo, C., Xiao, M., Minkov, M., Shi, Y. & Fan, S. Photonic crystal slab Laplace operator for image differentiation. Optica 5, 251–256 (2018).
Kwon, H., Sounas, D., Cordaro, A., Polman, A. & Alù, A. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett. 121, 173004 (2018).
Huang, P. S. & Zhang, S. Fast three-step phase-shifting algorithm. Appl. Opt. 45, 5086–5091 (2006).
Arbabi, E., Kamali, S. M., Arbabi, A. & Faraon, A. Full Stokes imaging polarimetry using dielectric metasurfaces. ACS Photon. 5, 3132–3140 (2018).
Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B. & Popescu, G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 210 (2017).
Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19, 1016–1026 (2011).
Shaked, N. T. Quantitative phase microscopy of biological samples using a portable interferometer. Opt. Lett. 37, 2016–2018 (2012).
Bon, P., Maucort, G., Wattellier, B. & Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009).
Baek, Y., Lee, K., Yoon, J., Kim, K. & Park, Y. White-light quantitative phase imaging unit. Opt. Express 24, 9308–9315 (2016).
Bouchal, P. et al. Geometric-phase microscopy for quantitative phase imaging of isotropic, birefringent and space-variant polarization samples. Sci. Rep. 9, 3608 (2019).
Paganin, D. & Nugent, K. A. Noninterferometric phase imaging with partially coherent light. Phys. Rev. Lett. 80, 2586–2589 (1998).
Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).
Kamali, S. M., Arbabi, E., Arbabi, A., Horie, Y. & Faraon, A. Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev. 10, 1002–1008 (2016).
She, A., Zhang, S., Shian, S., Clarke, D. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism and shift. Sci. Adv. 4, eaap9957 (2018).
Liu, V. & Fan, S. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233–2244 (2012).
Acknowledgements
This work was supported by the Caltech Innovation Initiative programe. The device nanofabrication was performed at the Kavli Nanoscience Institute at Caltech. We thank C. Choi and C. Yang for Fourier ptychography microscope measurements and helpful discussions. H.K. acknowledges a fellowship from Ilju organization.
Author information
Authors and Affiliations
Contributions
H.K. and A.F. conceived the project. H.K., E.A., S.M.K. and M.F.-D. designed and fabricated the samples. H.K. performed the simulations and measurements. H.K., E.A., S.M.K. and M.F. analysed the data. H.K., E.A. and A.F. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
H.K., E.A. and A.F. have submitted a patent application based on the idea presented in this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains more information about the work, Supplementary Figs. 1–13 and Tables 1 and 2.
Rights and permissions
About this article
Cite this article
Kwon, H., Arbabi, E., Kamali, S.M. et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics 14, 109–114 (2020). https://doi.org/10.1038/s41566-019-0536-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-019-0536-x