Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces

Abstract

Quantitative phase imaging (QPI) of transparent samples plays an essential role in multiple biomedical applications, and miniaturizing these systems will enable their adoption into point-of-care and in vivo applications. Here, we propose a compact quantitative phase gradient microscope (QGPM) based on two dielectric metasurface layers, inspired by a classical differential interference contrast (DIC) microscope. Owing to the multifunctionality and compactness of the dielectric metasurfaces, the QPGM simultaneously captures three DIC images to generate a quantitative phase gradient image in a single shot. The volume of the metasurface optical system is on the order of 1 mm3. Imaging experiments with various phase resolution samples verify the capability to capture quantitative phase gradient data, with phase gradient sensitivity better than 92.3 mrad μm−1 and single-cell resolution. The results showcase the potential of metasurfaces for developing miniaturized QPI systems for label-free cellular imaging and point-of-care devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic of a metasurface-based QPGM and its operation principle.
Fig. 2: Design and fabrication of the metasurfaces.
Fig. 3: Imaging experiment with the QPGM based on two separate metasurface layers.
Fig. 4: Imaging with the doublet QPGM formed from monolithic integration of two metasurface layers on the same substrate.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Zernike, F. How I discovered phase contrast. Science 121, 345–349 (1955).

    ADS  Article  Google Scholar 

  2. Lang, W. Nomarski Differential Interference-Contrast Microscopy (Carl Zeiss, 1982).

  3. Popescu, G. Quantitative Phase Imaging of Cells and Tissues (McGraw Hill, 2011).

  4. Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photon. 12, 578–589 (2018).

    ADS  Article  Google Scholar 

  5. Alford, R. et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol. Imaging 8, 341–354 (2009).

    Article  Google Scholar 

  6. Lee, K. et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors 13, 4170–4191 (2013).

    Article  Google Scholar 

  7. Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005).

    ADS  Article  Google Scholar 

  8. Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007).

    Article  Google Scholar 

  9. Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photon. 8, 256–263 (2014).

    ADS  Article  Google Scholar 

  10. Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photon. 7, 739–745 (2013).

    ADS  Article  Google Scholar 

  11. Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med. 6, 267ra175 (2014).

    Article  Google Scholar 

  12. Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  Google Scholar 

  13. Helmchen, F., Fee, M. S., Tank, D. W. & Denk, W. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).

    Article  Google Scholar 

  14. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    Article  Google Scholar 

  15. Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).

    ADS  Article  Google Scholar 

  16. Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).

    ADS  Article  Google Scholar 

  17. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081–1083 (1998).

    ADS  Article  Google Scholar 

  18. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    ADS  Article  Google Scholar 

  19. Zhan, A. et al. Low-contrast dielectric metasurface optics. ACS Photon. 3, 209–214 (2016).

    Article  Google Scholar 

  20. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    ADS  Article  Google Scholar 

  21. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017).

    ADS  Article  Google Scholar 

  22. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    ADS  Article  Google Scholar 

  23. Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

    ADS  Article  Google Scholar 

  24. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016).

    ADS  Article  Google Scholar 

  25. Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).

    Google Scholar 

  26. Shi, Z. et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett. 7, 041056 (2017).

    Google Scholar 

  27. Arbabi, E. et al. Two-photon microscopy with a double-wavelength metasurface objective lens. Nano Lett. 18, 4943–4948 (2018).

    ADS  Article  Google Scholar 

  28. Zhu, A. Y. et al. Compact aberration-corrected spectrometers in the visible using dispersion-tailored metasurfaces. Adv. Opt. Mater. 7, 1801144 (2018).

    Article  Google Scholar 

  29. Faraji-Dana., M. et al. Compact folded metasurface spectrometer. Nat. Commun. 9, 4196 (2018).

    ADS  Article  Google Scholar 

  30. Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photon. 12, 540–547 (2018).

    ADS  Article  Google Scholar 

  31. Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).

    ADS  Article  Google Scholar 

  32. Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photon. 11, 415–420 (2017).

    ADS  Article  Google Scholar 

  33. Avayu, O., Almeida, E., Prior, Y. & Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017).

    ADS  Article  Google Scholar 

  34. Zhou, Y. et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett. 18, 7529–7537 (2018).

    ADS  Article  Google Scholar 

  35. Guo, C., Xiao, M., Minkov, M., Shi, Y. & Fan, S. Photonic crystal slab Laplace operator for image differentiation. Optica 5, 251–256 (2018).

    ADS  Article  Google Scholar 

  36. Kwon, H., Sounas, D., Cordaro, A., Polman, A. & Alù, A. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett. 121, 173004 (2018).

    ADS  Article  Google Scholar 

  37. Huang, P. S. & Zhang, S. Fast three-step phase-shifting algorithm. Appl. Opt. 45, 5086–5091 (2006).

    ADS  Article  Google Scholar 

  38. Arbabi, E., Kamali, S. M., Arbabi, A. & Faraon, A. Full Stokes imaging polarimetry using dielectric metasurfaces. ACS Photon. 5, 3132–3140 (2018).

    Article  Google Scholar 

  39. Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B. & Popescu, G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 210 (2017).

    ADS  Article  Google Scholar 

  40. Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19, 1016–1026 (2011).

    ADS  Article  Google Scholar 

  41. Shaked, N. T. Quantitative phase microscopy of biological samples using a portable interferometer. Opt. Lett. 37, 2016–2018 (2012).

    ADS  Article  Google Scholar 

  42. Bon, P., Maucort, G., Wattellier, B. & Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009).

    ADS  Article  Google Scholar 

  43. Baek, Y., Lee, K., Yoon, J., Kim, K. & Park, Y. White-light quantitative phase imaging unit. Opt. Express 24, 9308–9315 (2016).

    ADS  Article  Google Scholar 

  44. Bouchal, P. et al. Geometric-phase microscopy for quantitative phase imaging of isotropic, birefringent and space-variant polarization samples. Sci. Rep. 9, 3608 (2019).

    ADS  Article  Google Scholar 

  45. Paganin, D. & Nugent, K. A. Noninterferometric phase imaging with partially coherent light. Phys. Rev. Lett. 80, 2586–2589 (1998).

    ADS  Article  Google Scholar 

  46. Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).

    ADS  Article  Google Scholar 

  47. Kamali, S. M., Arbabi, E., Arbabi, A., Horie, Y. & Faraon, A. Highly tunable elastic dielectric metasurface lenses. Laser Photon. Rev. 10, 1002–1008 (2016).

    ADS  Article  Google Scholar 

  48. She, A., Zhang, S., Shian, S., Clarke, D. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism and shift. Sci. Adv. 4, eaap9957 (2018).

    ADS  Article  Google Scholar 

  49. Liu, V. & Fan, S. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233–2244 (2012).

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Caltech Innovation Initiative programe. The device nanofabrication was performed at the Kavli Nanoscience Institute at Caltech. We thank C. Choi and C. Yang for Fourier ptychography microscope measurements and helpful discussions. H.K. acknowledges a fellowship from Ilju organization.

Author information

Authors and Affiliations

Authors

Contributions

H.K. and A.F. conceived the project. H.K., E.A., S.M.K. and M.F.-D. designed and fabricated the samples. H.K. performed the simulations and measurements. H.K., E.A., S.M.K. and M.F. analysed the data. H.K., E.A. and A.F. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Andrei Faraon.

Ethics declarations

Competing interests

H.K., E.A. and A.F. have submitted a patent application based on the idea presented in this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work, Supplementary Figs. 1–13 and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Arbabi, E., Kamali, S.M. et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics 14, 109–114 (2020). https://doi.org/10.1038/s41566-019-0536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0536-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing