Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrated photonic quantum technologies


Quantum technologies comprise an emerging class of devices capable of controlling superposition and entanglement of quantum states of light or matter, to realize fundamental performance advantages over ordinary classical machines. The technology of integrated quantum photonics has enabled the generation, processing and detection of quantum states of light at a steadily increasing scale and level of complexity, progressing from few-component circuitry occupying centimetre-scale footprints and operating on two photons, to programmable devices approaching 1,000 components occupying millimetre-scale footprints with integrated generation of multiphoton states. This Review summarizes the advances in integrated photonic quantum technologies and its demonstrated applications, including quantum communications, simulations of quantum chemical and physical systems, sampling algorithms, and linear-optic quantum information processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Key demonstrations in IQP in the past decade.
Fig. 2: Integrated single-photon sources, detectors and circuits.
Fig. 3: Integrated photonic devices for quantum communications.
Fig. 4: Quantum information processing and computing with integrated optics.
Fig. 5: On-chip quantum simulation of physical and chemical systems with photons.
Fig. 6: Towards a large-scale integration of quantum photonic circuits.


  1. 1.

    Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).

    ADS  Article  Google Scholar 

  2. 2.

    Wu, L.-A., Kimble, H. J., Hall, J. L. & Wu, H. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986).

    ADS  Article  Google Scholar 

  3. 3.

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  MATH  Article  Google Scholar 

  4. 4.

    Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  MATH  Article  Google Scholar 

  6. 6.

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  Google Scholar 

  8. 8.

    Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2000).

    ADS  Article  Google Scholar 

  10. 10.

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    ADS  Article  Google Scholar 

  11. 11.

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    ADS  Article  Google Scholar 

  12. 12.

    Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

    ADS  Article  Google Scholar 

  13. 13.

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. Forty-third Annual ACM Symposium on Theory of Computing 333–342 (Association for Computing Machinery, 2011).

  14. 14.

    Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O’Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot Boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Matthews, J. C. F., Politi, A., Andre, S. & O’Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346–350 (2009).

    ADS  Article  Google Scholar 

  17. 17.

    Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Laing, A. et al. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Smith, B. J., Kundys, D., Thomas-Peter, N., Smith, P. G. R. & Walmsley, I. A. Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    Corrielli, G. et al. Rotated waveplates in integrated waveguide optics. Nat. Commun. 5, 4249 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Sansoni, L. et al. Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    Crespi, A. et al. Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    Takesue, H. et al. Entanglement generation using silicon wire waveguide. Appl. Phys. Lett. 91, 201108 (2007).

    ADS  Article  Google Scholar 

  24. 24.

    Bonneau, D. et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 14, 045003 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Zhang, M. et al. Generation of multiphoton quantum states on silicon. Light Sci. Appl. 8, 41 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Lu, X. et al. Chip-integrated visible-telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019).

    Article  Google Scholar 

  29. 29.

    Zhang, X. et al. Integrated silicon nitride time-bin entanglement circuits. Opt. Lett. 43, 3469–3472 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Dutt, A. et al. On-chip optical squeezing. Phys. Rev. Appl. 3, 044005 (2015).

    ADS  Article  Google Scholar 

  31. 31.

    Schuck, C. et al. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip. Nat. Commun. 7, 10352 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Tanzilli, S. et al. PPLN waveguide for quantum communication. Eur. Phys. J. D 18, 155–160 (2002).

    ADS  Google Scholar 

  33. 33.

    Jin, H. et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Höpker, J. P. et al. Towards integrated superconducting detectors on lithium niobate waveguides. Preprint at (2017).

  35. 35.

    Horn, R. et al. Monolithic source of photon pairs. Phys. Rev. Lett. 108, 153605 (2012).

    ADS  Article  Google Scholar 

  36. 36.

    Wang, J. et al. Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun. 327, 49–55 (2014).

    ADS  Article  Google Scholar 

  37. 37.

    Sprengers, J. P. et al. Waveguide superconducting single photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011).

    ADS  Article  Google Scholar 

  38. 38.

    Sibson, P. et al. Chip-based quantum key distribution. Nat. Commun. 8, 13984 (2017).

    ADS  Article  Google Scholar 

  39. 39.

    Abellan, C. et al. Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica 3, 989–994 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    ADS  Article  Google Scholar 

  41. 41.

    Santagati, R. et al. Silicon photonic processor of two-qubit entangling quantum logic. J. Opt. 19, 114006 (2017).

    ADS  Article  Google Scholar 

  42. 42.

    Meany, T. et al. Laser written circuits for quantum photonics. Laser Photon. Rev. 9, 363–384 (2015).

    ADS  Article  Google Scholar 

  43. 43.

    Matsuda, N. et al. A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2, 817 (2012).

    Article  Google Scholar 

  44. 44.

    Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Feng, L.-T. et al. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat. Commun. 7, 11985 (2016).

    ADS  Article  Google Scholar 

  46. 46.

    Mohanty, A. et al. Quantum interference between transverse spatial waveguide modes. Nat. Commun. 8, 14010 (2017).

    ADS  Article  Google Scholar 

  47. 47.

    Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).

    ADS  Article  Google Scholar 

  48. 48.

    Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017).

    ADS  Article  Google Scholar 

  49. 49.

    Engin, E. et al. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt. Express 21, 27826–27834 (2013).

    ADS  Article  Google Scholar 

  50. 50.

    Spring, J. B. et al. Chip-based array of near-identical, pure, heralded single-photon sources. Optica 4, 90–96 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Llewellyn, D. et al. Demonstration of chip-to-chip quantum teleportation. In Conference on Lasers Electro-Optics (CLEO) JTh5C.4 (Optical Society of America, 2019).

  52. 52.

    Kaneda, F. & Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5, eaaw8586 (2019).

    ADS  Article  Google Scholar 

  53. 53.

    Collins, M. J. et al. Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4, 2582 (2014).

    ADS  Article  Google Scholar 

  54. 54.

    Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    ADS  Article  Google Scholar 

  55. 55.

    He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

    ADS  Article  Google Scholar 

  56. 56.

    Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    ADS  Article  Google Scholar 

  57. 57.

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    ADS  Article  Google Scholar 

  58. 58.

    Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    ADS  Article  Google Scholar 

  59. 59.

    Lenzini, F. et al. Active demultiplexing of single photons from a solid-state source. Laser. Rev. 11, 1600297 (2017).

    Article  Google Scholar 

  60. 60.

    Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

    ADS  Article  Google Scholar 

  61. 61.

    Wang, H. et al. Toward scalable boson sampling with photon loss. Phys. Rev. Lett. 120, 230502 (2018).

    ADS  Article  Google Scholar 

  62. 62.

    Loredo, J. C. et al. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017).

    ADS  Article  Google Scholar 

  63. 63.

    Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    ADS  Article  Google Scholar 

  64. 64.

    Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    ADS  Article  Google Scholar 

  65. 65.

    Gerrits, T. et al. On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys. Rev. A 84, 060301 (2011).

    ADS  Article  Google Scholar 

  66. 66.

    Sahin, D. et al. Waveguide photon-number-resolving detectors for quantum photonic integrated circuits. Appl. Phys. Lett. 103, 111116 (2013).

    ADS  Article  Google Scholar 

  67. 67.

    Martinez, N. J. D. et al. Single photon detection in a waveguidecoupled Ge-on-Si lateral avalanche photodiode. Opt. Express 25, 16130–16139 (2017).

    ADS  Article  Google Scholar 

  68. 68.

    Vines, P. et al. High performance planar germanium-on-silicon single-photon avalanche diode detectors. Nat. Commun. 10, 1086 (2019).

    ADS  Article  Google Scholar 

  69. 69.

    Honjo, T., Inoue, K. & Takahashi, H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer. Opt. Lett. 29, 2797–2799 (2004).

    ADS  Article  Google Scholar 

  70. 70.

    Ma, C. et al. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 3, 1274–1278 (2016).

    ADS  Article  Google Scholar 

  71. 71.

    Sibson, P. et al. Integrated silicon photonics for high-speed quantum key distribution. Optica 4, 172–177 (2017).

    ADS  Article  Google Scholar 

  72. 72.

    Bunandar, D. et al. Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X 8, 021009 (2018).

    Google Scholar 

  73. 73.

    Thompson, M. G. Large-scale integrated quantum photonic technologies for communications and computation. In Optical Fiber Communication Conference (OFC) W3D.3 (Optical Society of America, 2019).

  74. 74.

    Ding, Y. et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 3, 25 (2017).

    ADS  Article  Google Scholar 

  75. 75.

    Semenenko, H., Sibson, P., Thompson, M. G. & Erven, C. Interference between independent photonic integrated devices for quantum key distribution. Opt. Lett. 44, 275–278 (2019).

    ADS  Article  Google Scholar 

  76. 76.

    Agnesi, C. et al. Hong-Ou-Mandel interference between independent III–V on silicon waveguide integrated lasers. Opt. Lett. 44, 271–274 (2019).

    ADS  Article  Google Scholar 

  77. 77.

    Autebert, C. et al. Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons. Optica 3, 143–146 (2016).

    ADS  Article  Google Scholar 

  78. 78.

    Grassani, D. et al. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica 2, 88–94 (2015).

    ADS  Article  Google Scholar 

  79. 79.

    Wang, J. et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016).

    ADS  Article  Google Scholar 

  80. 80.

    Roger, T. et al. Real-time interferometric quantum random number generation on chip. J. Opt. Soc. Am. B 36, B137–B142 (2019).

    Article  Google Scholar 

  81. 81.

    Raffaelli, F. et al. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol. 3, 025003 (2018).

    ADS  Article  Google Scholar 

  82. 82.

    Politi, A., Matthews, J. C. F. & O’Brien, J. L. Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  83. 83.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    MathSciNet  MATH  Article  Google Scholar 

  84. 84.

    Metcalf, B. J. et al. Quantum teleportation on a photonic chip. Nat. Photon. 8, 770–774 (2014).

    ADS  Article  Google Scholar 

  85. 85.

    Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2013).

    ADS  Article  Google Scholar 

  86. 86.

    Flamini, F. et al. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining. Light Sci. Appl. 4, e354 (2015).

    Article  Google Scholar 

  87. 87.

    Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    ADS  Article  Google Scholar 

  88. 88.

    Sparrow, C. et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557, 660–667 (2018).

    ADS  Article  Google Scholar 

  89. 89.

    Taballione, C. et al. 8x8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 19, 26842–26857 (2019).

    ADS  Article  Google Scholar 

  90. 90.

    Silverstone, J. W. et al. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 6, 7948 (2015).

    ADS  Article  Google Scholar 

  91. 91.

    Ciampini, M. A. et al. Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 5, e16064 (2016).

    Article  Google Scholar 

  92. 92.

    Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019).

    Article  Google Scholar 

  93. 93.

    Adcock, J. C., Vigliar, C., Santagati, R., Silverstone, J. W. & Thompson, M. G. Programmable four-photon graph states on a silicon chip. Nat. Commun. 10, 3528 (2019).

    ADS  Article  Google Scholar 

  94. 94.

    Harrow, A. W. & Montanaro, A. Quantum computational supremacy. Nature 549, 203–209 (2017).

    ADS  Article  Google Scholar 

  95. 95.

    Spagnolo, N. et al. Three-photon bosonic coalescence in an integrated tritter. Nat. Commun. 4, 1606 (2013).

    ADS  Article  Google Scholar 

  96. 96.

    Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013).

    ADS  Article  Google Scholar 

  97. 97.

    Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013).

    ADS  Article  Google Scholar 

  98. 98.

    Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

    ADS  Article  Google Scholar 

  99. 99.

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    ADS  Article  Google Scholar 

  100. 100.

    Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014).

    ADS  Article  Google Scholar 

  101. 101.

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    ADS  Article  Google Scholar 

  102. 102.

    Tillmann, M. et al. Generalized multiphoton quantum interference. Phys. Rev. X 5, 041015 (2015).

    Google Scholar 

  103. 103.

    Bentivegna, M. et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015).

    ADS  Article  Google Scholar 

  104. 104.

    Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019).

    Article  Google Scholar 

  105. 105.

    Zhong, H.-S. et al. Experimental Gaussian Boson sampling. Sci. Bull. 64, 511–515 (2019).

    Article  Google Scholar 

  106. 106.

    Aaronson, S. & Arkhipov, A. Boson sampling is far from uniform. Quantum Inf. Comput. 14, 1383–1423 (2014).

    MathSciNet  Google Scholar 

  107. 107.

    Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014).

    ADS  Article  Google Scholar 

  108. 108.

    Giordani, T. et al. Experimental statistical signature of many-body quantum interference. Nat. Photon. 12, 173–178 (2018).

    ADS  Article  Google Scholar 

  109. 109.

    Agresti, I. et al. Pattern recognition techniques for Boson sampling validation. Phys. Rev. X 9, 011013 (2019).

    Google Scholar 

  110. 110.

    Neville, A. et al. Classical boson sampling algorithms with superior performance to near-term experiments. Nat. Phys. 13, 1153–1157 (2017).

    Article  Google Scholar 

  111. 111.

    Sansoni, L. et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012).

    ADS  Article  Google Scholar 

  112. 112.

    Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 7, 322–328 (2013).

    ADS  Article  Google Scholar 

  113. 113.

    Pitsios, I. et al. Photonic simulation of entanglement growth and engineering after a spin chain quench. Nat. Commun. 8, 1569 (2017).

    ADS  Article  Google Scholar 

  114. 114.

    Peruzzo, A. et al. Quantum walks of correlated photons. Science 329, 1500–1503 (2010).

    ADS  Article  Google Scholar 

  115. 115.

    Crespi, A. et al. Particle statistics affects quantum decay and Fano interference. Phys. Rev. Lett. 114, 090201 (2015).

    ADS  Article  Google Scholar 

  116. 116.

    Caruso, F., Crespi, A., Ciriolo, A. G., Sciarrino, F. & Osellame, R. Fast escape of a quantum walker from an integrated photonic maze. Nat. Commun. 7, 1682 (2016).

    Article  Google Scholar 

  117. 117.

    Biggerstaff, D. N. et al. Enhancing coherent transport in a photonic network using controllable decoherence. Nat. Commun. 7, 11282 (2016).

    ADS  Article  Google Scholar 

  118. 118.

    Tang, H. et al. Experimental quantum fast hitting on hexagonal graphs. Nat. Photon. 12, 754–758 (2018).

    ADS  Article  Google Scholar 

  119. 119.

    Poulios, K. et al. Quantum walks of correlated photon pairs in two-dimensional waveguide arrays. Phys. Rev. Lett. 112, 143604 (2014).

    ADS  Article  Google Scholar 

  120. 120.

    Paesani, S. et al. Experimental Bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118, 100503 (2017).

    ADS  Article  Google Scholar 

  121. 121.

    Santagati, R. et al. Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci. Adv. 4, eaap9646 (2018).

    ADS  Article  Google Scholar 

  122. 122.

    Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615–620 (2015).

    ADS  Article  Google Scholar 

  123. 123.

    Wang, J. et al. Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017).

    Article  Google Scholar 

  124. 124.

    Seok, T. J., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. 240×240 wafer-scale silicon photonic switches. In Optical Fiber Communication Conference (OFC) 2019 Th1E.5 (Optical Society of America, 2019).

  125. 125.

    Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    ADS  Article  Google Scholar 

  126. 126.

    He, M. et al. High-performance hybrid silicon and lithium niobite Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    ADS  Article  Google Scholar 

  127. 127.

    Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    ADS  Article  Google Scholar 

  128. 128.

    Li, G. et al. Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. Opt. Express 20, 12035–12039 (2012).

    ADS  Article  Google Scholar 

  129. 129.

    Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Loncar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    ADS  Article  Google Scholar 

  130. 130.

    Wu, R. et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 8, 910 (2018).

    Article  Google Scholar 

  131. 131.

    Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011).

    ADS  Article  Google Scholar 

  132. 132.

    Lee, H., Chen, T., Li, J., Painter, O. & Vahala, K. J. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun. 3, 867 (2012).

    ADS  Article  Google Scholar 

  133. 133.

    Digeronimo, G. E. et al. Integration of single-photon sources and detectors on GaAs. Photonics 3, 55 (2016).

    Article  Google Scholar 

  134. 134.

    Khasminskaya, S. et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photon. 10, 727–732 (2016).

    ADS  Article  Google Scholar 

  135. 135.

    Ong, J., Kumar, R. & Mookherjea, S. Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters. IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).

    ADS  Article  Google Scholar 

  136. 136.

    Piekarek, M. et al. High-extinction ratio integrated photonic filters for silicon quantum photonics. Opt. Lett. 42, 815–818 (2017).

    ADS  Article  Google Scholar 

  137. 137.

    Eltes, F. et al. An integrated cryogenic optical modulator. Preprint at (2019).

  138. 138.

    Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).

    ADS  Article  Google Scholar 

  139. 139.

    Carolan, J. et al. Scalable feedback control of single photon sources for photonic quantum technologies. Optica 6, 335–340 (2019).

    ADS  Article  Google Scholar 

  140. 140.

    Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    ADS  Article  Google Scholar 

Download references


We thank C.-Y. Lu for discussions on quantum dot sources and J. Bulmer for discussions on photonic quantum information processing. J.W. acknowledges support from the Natural Science Foundation of China (61975001), National Key Research & Development (R&D) Program of China (2018YFB1107205), Beijing Natural Science Foundation (Z190005), Beijing Academy of Quantum Information Sciences (Y18G21) and the Key R&D Program of Guangdong Province (2018B030329001). F.S. acknowledges support from the H2020-FETPROACT-2014 Grant QUCHIP (Quantum Simulation on a Photonic Chip; grant agreement no. 641039). A.L. acknowledges support from an EPSRC (Engineering and Physical Sciences Research Council) Early Career Fellowship EP/N003470/1. M.G.T. acknowledges support from an ERC (European Research Council) starter grant (ERC-2014-STG 640079) and an EPSRC Early Career Fellowship (EP/K033085/1).

Author information



Corresponding author

Correspondence to Mark G. Thompson.

Ethics declarations

Competing interests

M.T. is involved in developing quantum photonic technologies at PsiQuantum Corporation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sciarrino, F., Laing, A. et al. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing