An integrated broadband spectrometer on thin-film lithium niobate

Article metrics


Optical spectrometry is a tool to investigate wavelength-dependent light–matter interactions and is widely used in astronomy, physics and chemistry. Integration and miniaturization of the currently bulky spectrometers will have an impact on applications where compactness and low complexity are key, such as air- and spaceborne missions. A high-resolution spectroscopy principle based on the near-field detection of a spatial standing wave inside a subwavelength waveguide has shown great promise to accomplish some of the aforementioned demands. However, small-scale devices based on this principle face strong bandwidth limitations due to undersampling of the standing wave. Here, we demonstrate an integrated single-waveguide Fourier transform spectrometer with an operational bandwidth of 500 nm in the near- and short-wavelength infrared, not relying on any moving components. The prototype device, with a footprint of less than 10 mm2, exploits the electro-optic properties of thin-film lithium niobate in order to retrieve the complete spatial interferogram.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Electro-optic sampling of the broadband interferogram.
Fig. 2: Electro-optic LN waveguide spectrometer.
Fig. 3: Monochromatic and dual-wavelength measurements.
Fig. 4: Broadband spectra.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Blind, N., Le Coarer, E., Kern, P. & Gousset, S. Spectrographs for astrophotonics. Opt. Express 25, 27341–27369 (2017).

  2. 2.

    Manzardo, O., Herzig, H. P., Marxer, C. R. & de Rooij, N. F. Miniaturized time-scanning Fourier transform spectrometer based on silicon technology. Opt. Lett. 24, 1705–1707 (1999).

  3. 3.

    Knipp, D. et al. Silicon-based micro-Fourier spectrometer. IEEE Trans. Electron. Devices 52, 419–426 (2005).

  4. 4.

    Cheben, P. et al. A high-resolution silicon-in-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Opt. Express 15, 2299–2306 (2007).

  5. 5.

    Delâge, A. et al. Static Fourier-transform waveguide spectrometers. In 2009 11th International Conference on Transparent Optical Networks (ICTON) We.D1.1 (IEEE, 2009).

  6. 6.

    Ma, X., Li, M. & He, J.-J. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array. IEEE Photon. J. 5, 6600807 (2013).

  7. 7.

    Kyotoku, B. B. C., Chen, L. & Lipson, M. Sub-nm resolution cavity enhanced micro-spectrometer. Opt. Express 18, 102–107 (2009).

  8. 8.

    Babin, S. et al. Digital optical spectrometer-on-chip. Appl. Phys. Lett. 95, 041105 (2009).

  9. 9.

    Peroz, C. et al. Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications. Opt. Lett. 37, 695–697 (2012).

  10. 10.

    Griffiths, P. R. & de Haseth, J. A. Fourier Transform Infrared Spectrometry (Wiley, 2007).

  11. 11.

    Li, J., Lu, D.-f & Qi, Z.-m. Miniature Fourier transform spectrometer based on wavelength dependence of half-wave voltage of a LiNbO3 waveguide interferometer. Opt. Lett. 39, 3923–3926 (2014).

  12. 12.

    Dong, B. et al. Nano-silicon-photonic Fourier transform infrared (FTIR) spectrometer-on-a-chip. In Conference on Lasers and Electro-Optics (CLEO) STu4I.1 (OSA, 2015).

  13. 13.

    Souza, M. C. M. M., Grieco, A., Frateschi, N. C. & Fainman, Y. Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction. Nat. Commun. 9, 665 (2018).

  14. 14.

    Florjańczyk, M. et al. Planar waveguide spatial heterodyne spectrometer. Proc. SPIE 6796, 67963J (2007).

  15. 15.

    Velasco, A. V. et al. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides. Opt. Lett. 38, 706–708 (2013).

  16. 16.

    Nedeljkovic, M. et al. Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip. IEEE Photon. Technol. Lett. 28, 528–531 (2015).

  17. 17.

    Le Coarer, E. et al. Wavelength-scale stationary-wave integrated Fourier-transform spectrometry. Nat. Photon. 1, 473–478 (2007).

  18. 18.

    Bonneville, C. et al. SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors. Proc. SPIE 8616, 86160M (2013).

  19. 19.

    Nie, X., Ryckeboer, E., Roelkens, G. & Baets, R. CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform. Opt. Express 25, A409–A418 (2017).

  20. 20.

    Ferrand, J. et al. A SWIFTS operating in visible and near-infrared. Proc. SPIE 7010, 701046 (2008).

  21. 21.

    Osowiecki, G. D. et al. Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared. Proc. SPIE 9611, 96110P (2015).

  22. 22.

    Madi, M. et al. Lippmann waveguide spectrometer with enhanced throughput and bandwidth for space and commercial applications. Opt. Express 26, 2682–2707 (2018).

  23. 23.

    Ferrand, J. et al. Stationary wave integrated Fourier transform spectrometer (SWIFTS). Proc. SPIE 7604, 760414 (2010).

  24. 24.

    Thomas, F. et al. Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach–Zehnder modulator. Proc. SPIE 9516, 95160B (2015).

  25. 25.

    Loridat, J. et al. All integrated lithium niobate standing wave Fourier transform electro-optic spectrometer. J. Lightwave Technol. 36, 4900–4907 (2018).

  26. 26.

    Schmidt, R. & Kaminow, I. Metal-diffused optical waveguides in LiNbO3. Appl. Phys. Lett. 25, 458–460 (1974).

  27. 27.

    Thomas, F. et al. First results in near and mid IR lithium niobate-based integrated optics interferometer based on SWIFTS-Lippmann concept. J. Lightwave Technol. 32, 4338–4344 (2014).

  28. 28.

    Lyons, R. G. Understanding Digital Signal Processing. (Pearson Education, 2011).

  29. 29.

    Reig Escalé, M., Pohl, D., Sergeyev, A. & Grange, R. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides. Opt. Lett. 43, 1515–1518 (2018).

  30. 30.

    Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

  31. 31.

    He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

  32. 32.

    Bazzan, M. & Sada, C. Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2, 040603 (2015).

  33. 33.

    Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

  34. 34.

    Chang, L. et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531–535 (2016).

  35. 35.

    Ahmed, A. N. R., Shi, S., Zablocki, M., Yao, P. & Prather, D. W. Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt. Lett. 44, 618–621 (2019).

  36. 36.

    Chang, L. et al. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 42, 803–806 (2017).

  37. 37.

    Porter, C. D. & Tanner, D. B. Correction of phase errors in Fourier spectroscopy. Int. J. Infrared Millim. Waves 4, 273–298 (1983).

  38. 38.

    Zgraggen, E. et al. Optical properties of waveguide-coupled nanowires for sub-wavelength detection in microspectrometer applications. J. Opt. 17, 025801 (2015).

  39. 39.

    August, I., Oiknine, Y., AbuLeil, M., Abdulhalim, I. & Stern, A. Miniature compressive ultra-spectral imaging system utilizing a single liquid crystal phase retarder. Sci. Rep. 6, 23524 (2016).

  40. 40.

    Hong, B., Monifi, F. & Fainman, Y. Channel dispersed Fourier transform spectrometer. Commun. Phys. 1, 34 (2018).

Download references


We acknowledge support for nanofabrication from the Scientific Center of Optical and Electron Microscopy ScopeM and from the cleanroom facilities BRNC and FIRST of ETH Zürich. This project was initially funded by the Swiss Space Office at the State Secretariat for Education, Research and Innovation, in the frame of the Mesures de Positionnement MdP2016 funding scheme. This project has received funding from the European Union’s Horizon 2020 research and innovation programme from the European Research Council under grant no. 714837 (Chi2-nano-oxides). This work was also supported by Swiss National Science Foundation grant no. 150609. We are also grateful to the Swiss Space Center for thoughtful inputs during the project progress review meetings. We thank I. Shorubalko for contributing to the prototype preparation and G. Scalari and J. Faist for helpful discussions.

Author information

B.G. and M.M. developed the original idea of directly combining electro-optic actuators with the waveguide spectrometers to carry out integrated interferogram scanning. M.M., A.S., U.M., E.A. and R.G. conceived the project. D.P., M.R.E., F.K. and A.S. developed the fabrication process. D.P., M.R.E., M.M., F.K., P.B. and A.S. designed the set-up and performed the experiments. P.G. and B.G. provided technical advice in the course of the project. D.P., M.R.E. and R.G. wrote the manuscript. M.M. and R.G. supervised the project. U.M. managed the administrative and financial aspects of the project.

Correspondence to David Pohl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figs. 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pohl, D., Reig Escalé, M., Madi, M. et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photonics (2019) doi:10.1038/s41566-019-0529-9

Download citation