Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Future and challenges for hybrid upconversion nanosystems

Abstract

To improve the efficiency of photon upconversion, a hybrid approach of combining organic dyes and inorganic nanoparticles is proving successful, especially in the form of dye-sensitized lanthanide-doped upconversion nanoparticles, nanoparticle-sensitized molecular triplet–triplet annihilation systems and metal–organic-framework nanoparticles. In this Review, we survey the latest advances and examine the key factors affecting upconversion performance, such as spectral overlap, core–shell design and the management of triplet excitons and quenchers at the interface between materials. Although issues such as stability, triplet-state quenching, concentration quenching and reabsorption must still be overcome, smart designs of hybrid nanosystems offer exciting opportunities for applications such as solar photovoltaic devices, deep-tissue biomedical imaging, optogenetics and nanomedicine among others.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Energy transfer at the interface of organic–inorganic hybrid nanosystems.
Fig. 2: Creation of intermediate energy level to bridge energy gaps and increase spectral overlap.
Fig. 3: Tuning the D–A distance to enhance the upconversion efficiency.
Fig. 4: Quenching management in a hybrid system for effective upconversion.
Fig. 5: MOF-based TTA upconversion system.

References

  1. Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015).

    ADS  Google Scholar 

  2. Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015).

    Google Scholar 

  3. Schulze, T. F. & Schmidt, T. W. Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8, 103–125 (2015).

    Google Scholar 

  4. Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

    Google Scholar 

  5. Su, Q., Feng, W., Yang, D. & Li, F. Resonance energy transfer in upconversion nanoplatforms for selective biodetection. Acc. Chem. Res. 50, 32–40 (2017).

    Google Scholar 

  6. Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9, 300–305 (2014).

    ADS  Google Scholar 

  7. Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    ADS  Google Scholar 

  8. Xu, J. et al. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 11, 4133–4144 (2017).

    Google Scholar 

  9. Chen, C. et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat. Commun. 9, 3290 (2018).

    ADS  Google Scholar 

  10. Hou, Z. et al. 808 nm light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd3+-sensitized upconversion emission with enhanced anti-tumor efficacy. Biomaterials 101, 32–46 (2016).

    Google Scholar 

  11. Wu, X. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10, 1060–1066 (2016).

    Google Scholar 

  12. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 359, 679–684 (2018).

    ADS  Google Scholar 

  13. Deng, R. et al. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 10, 237–242 (2015).

    ADS  Google Scholar 

  14. Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8, 32–36 (2014).

    ADS  Google Scholar 

  15. Zhou, J. et al. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photon. 12, 154–158 (2018).

    ADS  Google Scholar 

  16. Zhang, Q., Yang, F., Xu, Z., Chaker, M. & Ma, D. Are lanthanide-doped upconversion materials good candidates for photocatalysis? Nanoscale Horiz. 4, 579–591 (2019).

    ADS  Google Scholar 

  17. Liu, X., Yan, C.-H. & Capobianco, J. A. Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015).

    Google Scholar 

  18. Huang, Z. et al. Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015).

    ADS  Google Scholar 

  19. Gray, V., Moth-Poulsen, K., Albinsson, B. & Abrahamsson, M. Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362, 54–71 (2018).

    Google Scholar 

  20. Wang, X. et al. Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev. 6, 4150–4167 (2017).

    Google Scholar 

  21. Garakyaraghi, S. & Castellano, F. N. Nanocrystals for triplet sensitization: molecular behavior from quantum-confined materials. Inorg. Chem. 57, 2351–2359 (2018).

    Google Scholar 

  22. Nienhaus, L., Wu, M., Bulovic, V., Baldo, M. A. & Bawendi, M. G. Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion. Dalton Trans. 47, 8509–8516 (2018).

    Google Scholar 

  23. Wu, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10, 31–34 (2016).

    ADS  Google Scholar 

  24. Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photon. 6, 560–564 (2012).

    ADS  Google Scholar 

  25. Li, D., Agren, H. & Chen, G. Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials. Dalton Trans. 47, 8526–8537 (2018).

    Google Scholar 

  26. Hao, S. et al. Enhancing dye-sensitized solar cell efficiency through broadband near-infrared upconverting nanoparticles. Nanoscale 9, 6711–6715 (2017).

    Google Scholar 

  27. Chen, G. et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 15, 7400–7407 (2015).

    ADS  Google Scholar 

  28. Garfield, D. J. et al. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photon. 12, 402–407 (2018).

    ADS  Google Scholar 

  29. Schmidt, T. W. & Castellano, F. N. Photochemical upconversion: the primacy of kinetics. J. Phys. Chem. Lett. 5, 4062–4072 (2014).

    Google Scholar 

  30. Fückel, B. et al. Singlet oxygen mediated photochemical upconversion of NIR light. J. Phys. Chem. Lett. 2, 966–971 (2011).

    Google Scholar 

  31. Mahboub, M., Huang, Z. & Tang, M. L. Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16, 7169–7175 (2016).

    ADS  Google Scholar 

  32. Gray, V. et al. CdS/ZnS core–shell nanocrystal photosensitizers for visible to UV upconversion. Chem. Sci. 8, 5488–5496 (2017).

    Google Scholar 

  33. Samia, A. C. S., Chen, X. & Burda, C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125, 15736–15737 (2003).

    Google Scholar 

  34. Braslavsky, S. E. Glossary of terms used in photochemistry (IUPAC Recommendations 2006). Pure Appl. Chem. 79, 293–465 (2007).

    Google Scholar 

  35. Huang, Z., Simpson, D. E., Mahboub, M., Li, X. & Tang, M. L. Ligand enhanced upconversion of near-infrared photons with nanocrystal light absorbers. Chem. Sci. 7, 4101–4104 (2016).

    Google Scholar 

  36. Li, X., Huang, Z., Zavala, R. & Tang, M. L. Distance-dependent triplet energy transfer between CdSe nanocrystals and surface bound anthracene. J. Phys. Chem. Lett. 7, 1955–1959 (2016).

    Google Scholar 

  37. Liu, Q. et al. Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance. Nat. Photon. 12, 548–553 (2018).

    ADS  Google Scholar 

  38. Wang, F. et al. Microscopic inspection and tracking of single upconversion nanoparticles in living cells. Light Sci. Appl. 7, e18007 (2018).

    ADS  Google Scholar 

  39. Wu, M., Jean, J., Bulović, V. & Baldo, M. A. Interference-enhanced infrared-to-visible upconversion in solid-state thin films sensitized by colloidal nanocrystals. Appl. Phys. Lett. 110, 211101 (2017).

    ADS  Google Scholar 

  40. Mahboub, M. et al. Midgap states in PbS quantum dots induced by Cd and Zn enhance photon upconversion. ACS Energy Lett. 767–772 (2018).

    Google Scholar 

  41. Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004).

    Google Scholar 

  42. Nienhaus, L. et al. Speed limit for triplet-exciton transfer in solid-state PbS nanocrystal-sensitized photon upconversion. ACS Nano 11, 7848–7857 (2017).

    Google Scholar 

  43. Li, Z., Lv, S., Wang, Y., Chen, S. & Liu, Z. Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore. J. Am. Chem. Soc. 137, 3421–3427 (2015).

    Google Scholar 

  44. Deng, R., Wang, J., Chen, R., Huang, W. & Liu, X. Enabling Förster resonance energy transfer from large nanocrystals through energy migration. J. Am. Chem. Soc. 138, 15972–15979 (2016).

    Google Scholar 

  45. Huang, Z. et al. PbS/CdS core–shell quantum dots suppress charge transfer and enhance triplet transfer. Angew. Chem. 129, 16810–16814 (2017).

    Google Scholar 

  46. Wisser, M. D. et al. Improving quantum yield of upconverting nanoparticles in aqueous media via emission sensitization. Nano Lett. 18, 2689–2695 (2018).

    ADS  Google Scholar 

  47. Ogawa, T. et al. Donor–acceptor–collector ternary crystalline films for efficient solid-state photon upconversion. J. Am. Chem. Soc. 140, 8788–8796 (2018).

    Google Scholar 

  48. Oldenburg, M. et al. Photon upconversion at crystalline organic–organic heterojunctions. Adv. Mater. 28, 8477–8482 (2016).

    Google Scholar 

  49. Park, J., Xu, M., Li, F. & Zhou, H.-C. 3D long-range triplet migration in a water-stable metal–organic framework for upconversion-based ultralow-power in vivo imaging. J. Am. Chem. Soc. 140, 5493–5499 (2018).

    Google Scholar 

  50. Ahmad, S., Liu, J., Gong, C., Zhao, J. & Sun, L. Photon up-conversion via epitaxial surface-supported metal–organic framework thin films with enhanced photocurrent. ACS Appl. Energy Mater. 1, 249–253 (2018).

    Google Scholar 

  51. Wilhelm, S. Perspectives for upconverting nanoparticles. ACS Nano 11, 10644–10653 (2017).

    Google Scholar 

  52. Frazer, L., Gallaher, J. K. & Schmidt, T. W. Optimizing the efficiency of solar photon upconversion. ACS Energy Lett. 2, 1346–1354 (2017).

    Google Scholar 

  53. Wintzheimer, S. et al. Supraparticles: functionality from uniform structural motifs. ACS Nano 12, 5093–5120 (2018).

    Google Scholar 

  54. Jye, S. K., Yi, C., Qianqian, S. & Wenlong, C. Nanoparticle superlattices: the roles of soft ligands. Adv. Sci. 5, 1700179 (2018).

    Google Scholar 

  55. Duan, P., Yanai, N. & Kimizuka, N. Photon upconverting liquids: matrix-free molecular upconversion systems functioning in air. J. Am. Chem. Soc. 135, 19056–19059 (2013).

    Google Scholar 

  56. Kang, J.-H., Kim, S.-H., Fernandez-Nieves, A. & Reichmanis, E. Amplified photon upconversion by photonic shell of cholesteric liquid crystals. J. Am. Chem. Soc. 139, 5708–5711 (2017).

    Google Scholar 

  57. Elham, G. et al. Oxygen-enhanced upconversion of near infrared light from below the silicon band gap. Preprint at https://doi.org/10.26434/chemrxiv.7834838.v1 (2019).

  58. Fennel, F. et al. Biphasic self-assembly pathways and size-dependent photophysical properties of perylene bisimide dye aggregates. J. Am. Chem. Soc. 135, 18722–18725 (2013).

    Google Scholar 

  59. Würthner, F. et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem. Rev. 116, 962–1052 (2016).

    Google Scholar 

  60. Huang, Z. & Tang, M. L. Designing transmitter ligands that mediate energy transfer between semiconductor nanocrystals and molecules. J. Am. Chem. Soc. 139, 9412–9418 (2017).

    Google Scholar 

  61. Anthony, J. E. The larger acenes: versatile organic semiconductors. Angew. Chem. Int. Ed. 47, 452–483 (2008).

    Google Scholar 

  62. Yong, C. K. et al. The entangled triplet pair state in acene and heteroacene materials. Nat. Commun. 8, 15953 (2017).

    ADS  Google Scholar 

  63. Li, X., Fast, A., Huang, Z., Fishman, D. A. & Tang, M. L. Complementary lock-and-key ligand binding of a triplet transmitter to a nanocrystal photosensitizer. Angew. Chem. Int. Ed. 56, 5598–5602 (2017).

    Google Scholar 

  64. Holden, S. J. et al. Defining the limits of single-molecule FRET resolution in TIRF microscopy. Biophys. J. 99, 3102–3111 (2010).

    ADS  Google Scholar 

  65. McCann, J. J., Choi, U. B., Zheng, L., Weninger, K. & Bowen, M. E. Optimizing methods to recover absolute FRET efficiency from immobilized single molecules. Biophys. J. 99, 961–970 (2010).

    ADS  Google Scholar 

  66. Zhang, Q. et al. Förster energy transport in metal–organic frameworks is beyond step-by-step hopping. J. Am. Chem. Soc. 138, 5308–5315 (2016).

    Google Scholar 

  67. Tayebjee, M. J. Y., McCamey, D. R. & Schmidt, T. W. Beyond Shockley–Queisser: molecular approaches to high-efficiency photovoltaics. J. Phys. Chem. Lett. 6, 2367–2378 (2015).

    Google Scholar 

  68. Briggs, J. A., Atre, A. C. & Dionne, J. A. Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits. J. Appl. Phys. 113, 124509 (2013).

    ADS  Google Scholar 

  69. Yin, D. et al. Huge enhancement of upconversion luminescence by broadband dye sensitization of core/shell nanocrystals. Dalton Trans. 45, 13392–13398 (2016).

    Google Scholar 

  70. Chen, G. et al. Efficient broadband upconversion of near-infrared light in dye-sensitized core/shell nanocrystals. Adv. Opt. Mater. 4, 1760–1766 (2016).

    Google Scholar 

  71. Zou, X. et al. A water-dispersible dye-sensitized upconversion nanocomposite modified with phosphatidylcholine for lymphatic imaging. Chem. Commun. 52, 13389–13392 (2016).

    Google Scholar 

  72. Ishikawa-Ankerhold, H. C., Ankerhold, R. & Drummen, G. P. C. Advanced fluorescence microscopy techniques — FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17, 4047–4132 (2012).

    Google Scholar 

  73. Van der Meer, B. Kappa-squared: from nuisance to new sense. Rev. Mol. Biotechnol. 82, 181–196 (2002).

    Google Scholar 

Download references

Acknowledgements

This project is primarily supported by Australia-China Joint Research Centre for Point-of-Care Testing (ACSRF65827, SQ2017YFGH001190), ARC Discovery Early Career Researcher Award Scheme (J.Z., DE180100669), Science and Technology Innovation Commission of Shenzhen (KQTD20170810110913065), National Natural Science Foundation of China (NSFC, 61729501, 51720105015), ARC Centre of Excellence in Exciton Science (T.S., CE170100026), Global Research Laboratory (GRL) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (no. 2016911815), KRICT (KK1933-10, SKO1930-20), and the Industrial Strategic Technology Development Program (no. 10077582) funded by the Ministry of Trade, Industry, and Energy (MOTIE), Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. James Schuck, Yung Doug Suh, Timothy W. Schmidt or Dayong Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, S., Zhou, J., Schuck, P.J. et al. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics 13, 828–838 (2019). https://doi.org/10.1038/s41566-019-0528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0528-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing