Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Broadband reduction of quantum radiation pressure noise via squeezed light injection


The Heisenberg uncertainty principle states that the position of an object cannot be known with infinite precision, as the momentum of the object would then be totally uncertain. This momentum uncertainty then leads to position uncertainty in future measurements. When continuously measuring the position of an object, this quantum effect, known as back-action, limits the achievable precision1,2. In audio-band, interferometer-type gravitational-wave detectors, this back-action effect manifests as quantum radiation pressure noise (QRPN) and will ultimately (but does not yet) limit sensitivity3. Here, we present the use of a quantum engineered state of light to directly manipulate this quantum back-action in a system where it dominates the sensitivity in the 10–50 kHz range. We observe a reduction of 1.2 dB in the quantum back-action noise. This experiment is a crucial step in realizing QRPN reduction for future interferometric gravitational-wave detectors and improving their sensitivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experiment.
Fig. 2: Low-frequency squeezed light.
Fig. 3: Noise budget.
Fig. 4: Manipulation of QRPN with squeezed light.
Fig. 5: Noise level as a function of squeezing angle.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Braginksky, V. & Vyatchanin, S. Gravitational waves and the limiting stability of self-excited oscillators. Sov. Phys. JETP 47, 433–435 (1978).

    ADS  Google Scholar 

  2. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  3. Hild, S. Beyond the second generation of laser-interferometric gravitational wave observatories. Class. Quantum Grav. 29, 124006 (2012).

    Article  ADS  Google Scholar 

  4. The LIGO Scientific Collaboration Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015).

    Article  ADS  Google Scholar 

  5. The VIRGO Collaboration Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Grav. 32, 024001 (2015).

    Article  Google Scholar 

  6. The KAGRA Collaboration Detector configuration of KAGRA—the Japanese cryogenic gravitational-wave detector. Class. Quantum Grav. 29, 124007 (2012).

    Article  Google Scholar 

  7. The LIGO Scientific Collaboration A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011).

    Article  Google Scholar 

  8. Grote, H. et al. First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett. 110, 181101 (2013).

    Article  ADS  Google Scholar 

  9. The LIGO Scientific Collaboration Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013).

    Article  Google Scholar 

  10. Clark, J. B., Lecocq, F., Simmonds, R. W., Aumentado, J. & Teufel, J. D. Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator. Nat. Phys. 12, 683–687 (2016).

    Article  Google Scholar 

  11. Kimble, H. J., Levin, Y., Matsko, A. B., Thorne, K. S. & Vyatchanin, S. P. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001).

    Article  ADS  Google Scholar 

  12. Ma, Y. et al. Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement. Nat. Phys. 13, 776–780 (2017).

    Article  Google Scholar 

  13. Khalili, F. Y. & Polzik, E. S. Overcoming the standard quantum limit in gravitational wave detectors using spin systems with a negative effective mass. Phys. Rev. Lett. 121, 031101 (2018).

    Article  ADS  Google Scholar 

  14. Purdy, T. P., Peterson, R. W. & Regal, C. A. Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801–804 (2013).

    Article  ADS  Google Scholar 

  15. Teufel, J. D., Lecocq, F. & Simmonds, R. W. Overwhelming thermomechanical motion with microwave radiation pressure shot noise. Phys. Rev. Lett. 116, 013602 (2016).

    Article  ADS  Google Scholar 

  16. Purdy, T. P., Grutter, K. E., Srinivasan, K. & Taylor, J. M. Quantum correlations from a room-temperature optomechanical cavity. Science 356, 1265–1268 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  17. Sudhir, V. et al. Quantum correlations of light from a room-temperature mechanical oscillator. Phys. Rev. X 7, 031055 (2017).

    Google Scholar 

  18. Cripe, J. et al. Measurement of quantum back action in the audio band at room temperature. Nature 568, 364–367 (2019).

    Article  ADS  Google Scholar 

  19. Cripe, J. et al. Quantum back action cancellation in the audio band. Preprint at (2018).

  20. Cole, G. D., Gröblacher, S., Gugler, K., Gigan, S. & Aspelmeyer, M. Monocrystalline AlxGa1 − xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. Appl. Phys. Lett. 92, 261108 (2008).

    Article  ADS  Google Scholar 

  21. Cole, G. D. et al. High-performance near- and mid-infrared crystalline coatings. Optica 3, 647–656 (2016).

    Article  ADS  Google Scholar 

  22. Singh, R., Cole, G. D., Cripe, J. & Corbitt, T. Stable optical trap from a single optical field utilizing birefringence. Phys. Rev. Lett. 117, 213604 (2016).

    Article  ADS  Google Scholar 

  23. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  24. Sheard, B. S., Gray, M. B., Mow-Lowry, C. M., McClelland, D. E. & Whitcomb, S. E. Observation and characterization of an optical spring. Phys. Rev. A 69, 051801 (2004).

    Article  ADS  Google Scholar 

  25. Corbitt, T. et al. An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007).

    Article  ADS  Google Scholar 

  26. Cripe, J. et al. Radiation-pressure-mediated control of an optomechanical cavity. Phys. Rev. A 97, 013827 (2018).

    Article  ADS  Google Scholar 

  27. Wade, A. R. et al. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light. Rev. Sci. Instrum. 87, 063104 (2016).

    Article  ADS  Google Scholar 

  28. Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).

    Article  ADS  Google Scholar 

  29. Vahlbruch, H. et al. Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys. Rev. Lett. 97, 011101 (2006).

    Article  ADS  Google Scholar 

  30. Chua, S. S. Y. et al. Backscatter tolerant squeezed light source for advanced gravitational-wave detectors. Opt. Lett. 36, 4680–4682 (2011).

    Article  ADS  Google Scholar 

  31. Braginsky, V. B., Vorontsov, Y. I. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547–557 (1980).

    Article  ADS  Google Scholar 

  32. Oelker, E. et al. Audio-band frequency-dependent squeezing for gravitational-wave detectors. Phys. Rev. Lett. 116, 041102 (2016).

    Article  ADS  Google Scholar 

  33. Gräf, C. et al. Design of a speed meter interferometer proof-of-principle experiment. Class. Quantum Grav. 31, 215009 (2014).

    Article  ADS  Google Scholar 

  34. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  Google Scholar 

  35. Braginsky, V. B. Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator. Sov. Phys. JETP 26, 831 (1968).

    ADS  Google Scholar 

  36. Buonanno, A. & Chen, Y. Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors. Phys. Rev. D 64, 042006 (2001).

    Article  ADS  Google Scholar 

Download references


This research was supported by the Australian Research Council under the Australian Research Council (ARC) Centre of Excellence for Gravitational Wave Discovery grant no. CE170100004 and ARC Discovery Project DP160100760. J.C. and T.C. are supported by the National Science Foundation (NSF; grants nos. PHY-1150531 and PHY-1806634). The microresonator manufacturing was carried out at the University of California, Santa Barbara (UCSB) Nanofabrication Facility. M.J.Y. thanks D. Shaddock for initial discussions.

Author information

Authors and Affiliations



M.J.Y., J.C. and T.C. performed the investigation and formal analysis. D.E.M. and T.C. performed the conceptualization. M.J.Y. wrote the original draft manuscript. J.C., T.G.M., R.L.W., D.E.M. and T.C. reviewed and edited the manuscript. G.L.M., T.G.M., P.H., D.F. and G.D.C. provided resources. T.G.M., R.L.W., B.J.J.S., D.E.M. and T.C. provided supervision.

Corresponding author

Correspondence to Min Jet Yap.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, M.J., Cripe, J., Mansell, G.L. et al. Broadband reduction of quantum radiation pressure noise via squeezed light injection. Nat. Photonics 14, 19–23 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing