Front-induced transitions

Abstract

Refractive index fronts propagating in waveguides are special spatiotemporal perturbations. The interaction of light with such fronts can be described in terms of an indirect transition where the frequency and wavenumber of a guided mode both are changed. In recent years, front-induced transitions have been used in dispersion-engineered waveguides for frequency conversion, optical delays, and bandwidth and pulse duration manipulation. These concepts have originated from different research areas of photonics, such as nonlinear fibre optics, slow-light waveguides, plasma physics, moving media and relativistic effects. Here, we discuss these concepts, providing a unifying theoretical description and highlight the potential of this exciting research field for light manipulation in guided optics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The refractive index front and the dispersion relation.
Fig. 2: Schematic representation of different photonic transitions.
Fig. 3: Signal transmission through the front.
Fig. 4: Signal reflection from the front.
Fig. 5: Signal trapping inside the front.
Fig. 6: Dynamic pulse delay in a photonic crystal waveguide.

References

  1. 1.

    Snyder, A. W. & Love, J. Optical Waveguide Theory (Springer, 1983).

  2. 2.

    Vivien, L. & Pavesi, L. Handbook of Silicon Photonics 1st edn (CRC Press, 2013).

  3. 3.

    Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A. & Smith, D. R. Subwavelength integrated photonics. Nature 560, 565–572 (2018).

  4. 4.

    Agrawal, G. P. Nonlinear Fiber Optics 5th edn (Academic Press, 2013).

  5. 5.

    Baba, T. Slow light in photonic crystals. Nat. Photon. 2, 465–473 (2008).

  6. 6.

    Krauss, T. F. Why do we need slow light? Nat. Photon. 2, 448–450 (2008).

  7. 7.

    Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 9, 19–32 (2014).

  8. 8.

    Stepanov, N. S. Adiabatic transformation of a wave spectrum in a nonstationary medium with dispersion. Radiophys. Quantum Electron. 12, 227–234 (1969).

  9. 9.

    Geltner, I., Avitzour, Y. & Suckewer, S. Picosecond pulse frequency upshifting by rapid free-carrier creation in ZnSe. Appl. Phys. Lett. 81, 226–228 (2002).

  10. 10.

    Yanik, M. F. & Fan, S. Stopping light all optically. Phys. Rev. Lett. 92, 083901 (2004).

  11. 11.

    Notomi, M. & Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803 (2006).

  12. 12.

    Upham, J., Tanaka, Y., Asano, T. & Noda, S. On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides. Appl. Phys. Express 3, 062001 (2010).

  13. 13.

    Castellanos Muñoz, M., Petrov, A. Y. & Eich, M. All-optical on-chip dynamic frequency conversion. Appl. Phys. Lett. 101, 141119 (2012).

  14. 14.

    Kim, B. Y., Blake, J. N., Engan, H. E. & Shaw, H. J. All-fiber acousto-optic frequency shifter. Opt. Lett. 11, 389–391 (1986).

  15. 15.

    Stolte, R. & Ulrich, R. Integrated-optical gigahertz frequency shifter for 1.5 μm signals. Electron. Lett. 33, 1217–1219 (1997).

  16. 16.

    Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

  17. 17.

    Kittlaus, E. A., Otterstrom, N. T., Kharel, P., Gertler, S. & Rakich, P. T. Non-reciprocal interband Brillouin modulation. Nat. Photon. 12, 613–619 (2018).

  18. 18.

    Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

  19. 19.

    Zhu, Z., Gauthier, D. J. & Boyd, R. W. Stored light in an optical fiber via stimulated Brillouin scattering. Science 318, 1748–1750 (2007).

  20. 20.

    Merklein, M., Stiller, B., Vu, K., Madden, S. J. & Eggleton, B. A chip-integrated coherent photonic–phononic memory. Nat. Commun. 8, 574 (2017).

  21. 21.

    Merklein, M., Stiller, B. & Eggleton, B. Brillouin-based light storage and delay techniques. J. Opt. 20, 083003 (2018).

  22. 22.

    Dekker, R. et al. Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses. Opt. Express 14, 8336–8346 (2006).

  23. 23.

    Hsieh, I. W. et al. Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires. Opt. Express 15, 1135–1146 (2007).

  24. 24.

    Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

  25. 25.

    Webb, K. E. et al. Nonlinear optics of fibre event horizons. Nat. Commun. 5, 4969 (2014).

  26. 26.

    Lobanov, V. E. & Sukhorukov, A. P. Total reflection, frequency, and velocity tuning in optical pulse collision in nonlinear dispersive media. Phys. Rev. A 82, 033809 (2010).

  27. 27.

    Rosanov, N. N., Vysotina, N. V. & Shatsev, A. N. Forward light reflection from a moving inhomogeneity. JETP Lett. 93, 308–312 (2011).

  28. 28.

    Sukhorukov, A. P., Voitova, T. A., Lobanov, V. E., Bugai, A. N. & Sazonov, S. V. Nonlinear effects upon collisions of optical pulses: tunneling, blocking, and trapping. Bull. Russ. Acad. Sci. Phys. 76, 305–308 (2012).

  29. 29.

    Choudhary, A. & König, F. Efficient frequency shifting of dispersive waves at solitons. Opt. Express 20, 5538–5546 (2012).

  30. 30.

    Eilenberger, F., Kabakova, I. V., de Sterke, C. M., Eggleton, B. & Pertsch, T. Cavity optical pulse extraction: ultra-short pulse generation as seeded Hawking radiation. Sci. Rep. 3, 2607 (2013).

  31. 31.

    Castellanos Muñoz, M. et al. Optically induced indirect photonic transitions in a slow light photonic crystal waveguide. Phys. Rev. Lett. 112, 053904 (2014).

  32. 32.

    Ulchenko, E. A. et al. Pulse compression and broadening by reflection from a moving front of a photonic crystal. Opt. Express 22, 13280–13287 (2014).

  33. 33.

    Kondo, K. & Baba, T. Dynamic wavelength conversion in copropagating slow-light pulses. Phys. Rev. Lett. 112, 223904 (2014).

  34. 34.

    Plansinis, B. W., Donaldson, W. R. & Agrawal, G. P. What is the temporal analog of reflection and refraction of optical beams? Phys. Rev. Lett. 115, 183901 (2015).

  35. 35.

    Ciret, C., Leo, F., Kuyken, B., Roelkens, G. & Gorza, S.-P. Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide. Opt. Express 24, 114–124 (2016).

  36. 36.

    Kanakis, P. & Kamalakis, T. Enabling transistor-like action in photonic crystal waveguides using optical event horizons. Opt. Lett. 41, 1372–1375 (2016).

  37. 37.

    Matsuda, N. Deterministic reshaping of single-photon spectra using cross-phase modulation. Sci. Adv. 2, e1501223 (2016).

  38. 38.

    Kondo, K. & Baba, T. Slow-light-induced Doppler shift in photonic-crystal waveguides. Phys. Rev. A 93, 011802 (2016).

  39. 39.

    Kondo, K., Ishikura, N., Tamura, T. & Baba, T. Temporal pulse compression by dynamic slow-light tuning in photonic-crystal waveguides. Phys. Rev. A 91, 023831 (2015).

  40. 40.

    Gaafar, M. A., Petrov, A. Y. & Eich, M. Free carrier front induced indirect photonic transitions: a new paradigm for frequency manipulation on chip. ACS Photon. 4, 2751–2758 (2017).

  41. 41.

    Kondo, K. & Baba, T. Adiabatic wavelength redshift by dynamic carrier depletion using p-i-n-diode-loaded photonic crystal waveguides. Phys. Rev. A 97, 033818 (2018).

  42. 42.

    Marest, T. et al. Collision between a dark soliton and a linear wave in an optical fiber. Opt. Express 26, 23480–23491 (2018).

  43. 43.

    Gaafar, M. A. et al. Reflection from a free carrier front via an intraband indirect photonic transition. Nat. Commun. 9, 1447 (2018).

  44. 44.

    Semenova, V. I. Reflection of electromagnetic waves from an ionization front. Radiophys. Quantum Electron. 10, 599–604 (1967).

  45. 45.

    Lai, C. H., Katsouleas, T. C., Mori, W. B. & Whittum, D. Frequency upshifting by an ionization front in a magnetized plasma. IEEE Trans. Plasma Sci. 21, 45–52 (1993).

  46. 46.

    Lampe, M., Ott, E. & Walker, J. H. Interaction of electromagnetic waves with a moving ionization front. Phys. Fluids 21, 42–54 (1978).

  47. 47.

    Meng, F., Thomson, M. D. & Roskos, H. G. Relativistic Doppler frequency upconversion of terahertz pulses reflecting from a photoinduced plasma front in silicon. Phys. Rev. B 90, 155207 (2014).

  48. 48.

    Biancalana, F., Amann, A., Uskov, A. V. & O’Reilly, E. P. Dynamics of light propagation in spatiotemporal dielectric structures. Phys. Rev. E 75, 046607 (2007).

  49. 49.

    Savage, R. L., Joshi, C. & Mori, W. B. Frequency upconversion of electromagnetic radiation upon transmission into an ionization front. Phys. Rev. Lett. 68, 946–949 (1992).

  50. 50.

    Savage, R. L., Brogle, R. P., Mori, W. B. & Joshi, C. Frequency upshifting and pulse compression via underdense relativistic ionization fronts. IEEE Trans. Plasma Sci. 21, 5–19 (1993).

  51. 51.

    Gaafar, M. A., Renner, H., Petrov, A. Y. & Eich, E. Linear Schrödinger equation with temporal evolution for front induced transitions. Opt. Express 27, 21273–21284 (2019).

  52. 52.

    de Sterke, C. M. Optical push broom. Opt. Lett. 17, 914–916 (1992).

  53. 53.

    Broderick, N. G. R., Taverner, D., Richardson, D. J., Ibsen, M. & Laming, R. I. Optical pulse compression in fiber Bragg gratings. Phys. Rev. Lett. 79, 4566–4569 (1997).

  54. 54.

    Kondo, K. et al. Ultrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguides. Phys. Rev. Lett. 110, 053902 (2013).

  55. 55.

    Beggs, D. M. et al. Ultrafast tunable optical delay line based on indirect photonic transitions. Phys. Rev. Lett. 108, 213901 (2012).

  56. 56.

    Beggs, D. M., Krauss, T. F., Kuipers, L. & Kampfrath, T. Ultrafast tilting of the dispersion of a photonic crystal and adiabatic spectral compression of light pulses. Phys. Rev. Lett. 108, 033902 (2012).

  57. 57.

    Jacquet, M. & König, F. Quantum vacuum emission from a refractive-index front. Phys. Rev. A 92, 023851 (2015).

  58. 58.

    Bermudez, D. & Leonhardt, U. Hawking spectrum for a fiber-optical analog of the event horizon. Phys. Rev. A 93, 053820 (2016).

  59. 59.

    Steel, M. J., Jackson, D. G. A. & de Sterke, C. M. Approximate model for optical pulse compression by cross-phase modulation in Bragg gratings. Phys. Rev. A 50, 3447–3452 (1994).

  60. 60.

    Gordon, J. P. Dispersive perturbations of solitons of the nonlinear Schrödinger equation. J. Opt. Soc. Am. B 9, 91–97 (1992).

  61. 61.

    Yulin, A. V., Skryabin, D. V. & Russell, P. S. J. Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion. Opt. Lett. 29, 2411–2413 (2004).

  62. 62.

    Skryabin, D. V. & Yulin, A. V. Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers. Phys. Rev. E 72, 016619 (2005).

  63. 63.

    de Sterke, C. M., Broderick, N. G. R., Eggleton, B. & Steel, M. J. Nonlinear optics in fiber gratings. Opt. Fiber Technol. 2, 253–268 (1996).

  64. 64.

    Reed, E. J., Soljačić, M. & Joannopoulos, J. D. Color of shock waves in photonic crystals. Phys. Rev. Lett. 90, 203904 (2003).

  65. 65.

    Reed, E. J., Soljačić, M. & Joannopoulos, J. D. Reversed Doppler effect in photonic crystals. Phys. Rev. Lett. 91, 133901 (2003).

  66. 66.

    Stepanov, N. S. Waves in nonstationary media. Radiophys. Quantum Electron. 36, 401–409 (1993).

  67. 67.

    Plansinis, B. W., Donaldson, W. R. & Agrawal, G. P. Temporal waveguides for optical pulses. J. Opt. Soc. Am. B 33, 1112–1119 (2016).

  68. 68.

    Tanabe, T. et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Appl. Phys. Lett. 90, 031115 (2007).

  69. 69.

    Zhang, Y. et al. Non-degenerate two-photon absorption in silicon waveguides: analytical and experimental study. Opt. Express 23, 17101–17110 (2015).

  70. 70.

    Joannopoulos, J. D. Photonic Crystals, Molding the Flow of Light (Princeton University Press, 2008).

  71. 71.

    Yanik, M. F. & Fan, S. Stopping and storing light coherently. Phys. Rev. A 71, 013803 (2005).

  72. 72.

    Preble, S. F., Xu, Q. & Lipson, M. Changing the colour of light in a silicon resonator. Nat. Photon. 1, 293–296 (2007).

  73. 73.

    Kampfrath, T. et al. Ultrafast adiabatic manipulation of slow light in a photonic crystal. Phys. Rev. A 81, 043837 (2010).

  74. 74.

    Munoz, M. C., Kanchana, A., Petrov, A. Y. & Eich, M. Dynamic light storage in slow light waveguides. IEEE J. Quantum Electron. 48, 862–866 (2012).

  75. 75.

    Verbist, M., Bogaerts, W. & Thourhout, D. V. Design of weak 1-D Bragg grating filters in SOI waveguides using volume holography techniques. J. Lightwave Technol. 32, 1915–1920 (2014).

  76. 76.

    Li, J., White, T. P., O’Faolain, L., Gomez-Iglesias, A. & Krauss, T. F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 16, 6227–6232 (2008).

  77. 77.

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

  78. 78.

    Meltz, G., Morey, W. W. & Glenn, W. H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14, 823–825 (1989).

  79. 79.

    Yanik, M. F. & Fan, S. Time reversal of light with linear optics and modulators. Phys. Rev. Lett. 93, 173903 (2004).

  80. 80.

    Sivan, Y. & Pendry, J. B. Time reversal in dynamically tuned zero-gap periodic systems. Phys. Rev. Lett. 106, 193902 (2011).

  81. 81.

    Yachini, M., Malomed, B. & Bahabad, A. Envelope time reversal of optical pulses following frequency conversion with accelerating quasi-phase-matching. ACS Photon. 3, 2017–2021 (2016).

  82. 82.

    Minkov, M. & Fan, S. Localization and time-reversal of light through dynamic modulation. Phys. Rev. B 97, 060301 (2018).

  83. 83.

    Konoike, R., Asano, T. & Noda, S. On-chip dynamic time reversal of light in a coupled-cavity system. APL Photon. 4, 030806 (2019).

  84. 84.

    Colman, P., Combrié, S., Lehoucq, G., de Rossi, A. & Trillo, S. Blue self-frequency shift of slow solitons and radiation locking in a line-defect waveguide. Phys. Rev. Lett. 109, 093901 (2012).

  85. 85.

    Blanco-Redondo, A. et al. Observation of soliton compression in silicon photonic crystals. Nat. Commun. 5, 3160 (2014).

  86. 86.

    Bhat, N. A. R. & Sipe, J. E. Optical pulse propagation in nonlinear photonic crystals. Phys. Rev E 64, 056604 (2001).

  87. 87.

    Yulin, A. V. & Skryabin, D. V. Slowing down of solitons by intrapulse Raman scattering in fibers with frequency cutoff. Opt. Lett. 31, 3092–3094 (2006).

  88. 88.

    Demircan, A., Amiranashvili, S. & Steinmeyer, G. Controlling light by light with an optical event horizon. Phys. Rev. Lett. 106, 163901 (2011).

  89. 89.

    Belgiorno, F. et al. Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105, 203901 (2010).

  90. 90.

    Plansinis, B. W., Donaldson, W. R. & Agrawal, G. P. Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses. J. Opt. Soc. Am. B 35, 436–445 (2018).

  91. 91.

    Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

  92. 92.

    Köttig, F. et al. Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion. Nat. Commun. 8, 813 (2017).

  93. 93.

    Maier, S. A. Plasmonics: Fundamentals and Applications (Springer US, 2007).

  94. 94.

    Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

  95. 95.

    Gramotnev, D. K. & Bozhevolnyi, S. I. Nanofocusing of electromagnetic radiation. Nat. Photon. 8, 13–22 (2014).

  96. 96.

    Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Lightwave Technol. 32, 660–680 (2014).

  97. 97.

    Wengerowsky, S., Joshi, S. K., Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength-multiplexed quantum communication network. Nature 564, 225–228 (2018).

  98. 98.

    Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

  99. 99.

    Morichetti, F. et al. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion. Nat. Commun. 2, 296 (2011).

  100. 100.

    Monat, C. et al. Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Opt. Express 18, 22915–22927 (2010).

  101. 101.

    Suchowski, H., Porat, G. & Arie, A. Adiabatic processes in frequency conversion. Laser Photon. Rev. 8, 333–367 (2014).

  102. 102.

    Tan, D. T. H., Agarwal, A. M. & Kimerling, L. C. Nonlinear photonic waveguides for on-chip optical pulse compression. Laser Photon. Rev. 9, 294–308 (2015).

  103. 103.

    Foster, M. A. et al. Ultrafast waveform compression using a time-domain telescope. Nat. Photon. 3, 581–585 (2009).

  104. 104.

    Karpiński, M., Jachura, M., Wright, L. J. & Smith, B. J. Bandwidth manipulation of quantum light by an electro-optic time lens. Nat. Photon. 11, 53–57 (2016).

  105. 105.

    Xu, Q., Dong, P. & Lipson, M. Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys. 3, 406–410 (2007).

  106. 106.

    Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

  107. 107.

    Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

  108. 108.

    Tanaka, Y. et al. Dynamic control of the Q factor in a photonic crystal nanocavity. Nat. Mater. 6, 862–865 (2007).

  109. 109.

    Tanabe, T., Notomi, M., Taniyama, H. & Kuramochi, E. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning. Phys. Rev. Lett. 102, 043907 (2009).

  110. 110.

    Elshaari, A. W., Aboketaf, A. & Preble, S. F. Controlled storage of light in silicon cavities. Opt. Express 18, 3014–3022 (2010).

  111. 111.

    Upham, J. et al. Pulse capture without carrier absorption in dynamic Q photonic crystal nanocavities. Opt. Express 22, 15459–15466 (2014).

  112. 112.

    Drori, J., Rosenberg, Y., Bermudez, D., Silberberg, Y. & Leonhardt, U. Observation of stimulated Hawking radiation in an optical analogue. Phys. Rev. Lett. 122, 010404 (2019).

Download references

Acknowledgements

We acknowledge the support of the German Research Foundation (DFG) under grant no. 392102174. We further acknowledge discussions with H. Renner.

Author information

M.A.G. performed the LSE simulations and wrote the first version of the manuscript with A.Y.P. All authors discussed and edited the content in the manuscript.

Correspondence to Mahmoud A. Gaafar or Alexander Yu. Petrov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaafar, M.A., Baba, T., Eich, M. et al. Front-induced transitions. Nat. Photonics 13, 737–748 (2019). https://doi.org/10.1038/s41566-019-0511-6

Download citation