Abstract
Wave–particle duality epitomizes the counterintuitive character of quantum physics. A striking illustration is the quantum delayed-choice experiment, which is based on Wheeler’s classic delayed-choice gedanken experiment, but with the addition of a quantum-controlled device enabling wave-to-particle transitions. Here, we realize a quantum delayed-choice experiment in which we control the wave and the particle states of photons and particularly the phase between them, thus directly establishing the created quantum nature of the wave–particle. We generate three-photon entangled states and inject one photon into a Mach–Zehnder interferometer embedded in a 186-m-long two-photon Hong–Ou–Mandel interferometer. The third photon is sent 141 m away from the interferometers and remotely prepares a two-photon quantum gate according to independent active choices under Einstein locality conditions. We realize transitions between wave and particle states in both classical and quantum scenarios, and therefore tests of the complementarity principle that go fundamentally beyond earlier implementations.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
Change history
28 April 2020
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
References
Bohr, N. The quantum postulate and the recent development of atomic theory. Nature 121, 580–590 (1928).
Wheeler, J. A. in Mathematical Foundations of Quantum Theory (ed. Marlow, A. R.) 9–48 (Academic Press, 1978).
Wheeler, J. A. & Zurek, W. H. Quantum Theory and Measurement (Princeton University Press, 1984).
Alley, C. O., Jakubowicz, O. G. & Wickes, W. C. Results of the delayed-random-choice quantum mechanics experiment with light quanta. In Proceedings of the 2nd International Symposium on Foundations of Quantum Mechanics, 36 (Physical Society of Japan, 1986).
Hellmuth, T., Walther, H., Zajonc, A. & Schleich, W. Delayed-choice experiments in quantum interference. Phys. Rev. A 35, 2532–2541 (1987).
Baldzuhn, J., Mohler, E. & Martienssen, W. A wave–particle delayed-choice experiment with a single-photon state. Z. Phys. B 77, 347–352 (1989).
Jacques, V. et al. Experimental realization of Wheeler’s delayed-choice gedanken experiment. Science 315, 966–968 (2007).
Manning, A. G., Khakimov, R. I., Dall, R. G. & Truscott, A. G. Wheeler’s delayed-choice gedanken experiment with a single atom. Nat. Phys. 11, 539–542 (2015).
Shadbolt, P., Mathews, J. C. F., Laing, A. & O’Brien, J. L. Testing foundations of quantum mechanics with photons. Nat. Phys. 10, 278–286 (2014).
Ma, X.-S., Kofler, J. & Zeilinger, A. Delayed-choice gedanken experiments and their realizations. Rev. Mod. Phys. 88, 015005 (2016).
Greenberger, D. M. & Yasin, A. Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391–394 (1988).
Jaeger, G., Shimony, A. & Vaidman, L. Two interferometric complementarities. Phys. Rev. A 51, 54–67 (1995).
Englert, B.-G. Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154–2157 (1996).
Ionicioiu, R. & Terno, D. R. Proposal for a quantum delayed-choice experiment. Phys. Rev. Lett. 107, 230406 (2011).
Scully, M. O. & Drühl, K. Quantum eraser: a proposed photon correlation experiment concerning observation and ‘delayed choice’ in quantum mechanics. Phys. Rev. A 25, 2208–2213 (1982).
Coles, P. J., Kaniewski, J. & Wehner, S. Equivalence of wave–particle duality to entropic uncertainty. Nat. Commun. 5, 5814 (2014).
Rab, A. S. et al. Entanglement of photons in their dual wave-particle nature. Nat. Commun. 8, 915 (2017).
Peruzzo, A., Shadbolt, P., Brunner, N., Popescu, S. & O’Brien, J. L. A quantum delayed-choice experiment. Science 338, 634–637 (2012).
Kaiser, F., Coudreau, T., Milman, P., Ostrowsky, D. B. & Tanzilli, S. Entanglement-enabled delayed-choice experiment. Science 338, 637–640 (2012).
Tang, J.-S. et al. Realization of quantum Wheeler’s delayed-choice experiment. Nat. Photon. 6, 600–604 (2012).
Roy, S. S., Shukla, A. & Mahesh, T. S. NMR implementation of a quantum delayed-choice experiment. Phys. Rev. A 85, 022109 (2012).
Auccaise, R. et al. Experimental analysis of the quantum complementarity principle. Phys. Rev. A 85, 032121 (2012).
Xin, T., Li, H., Wang, B.-X. & Long, G.-L. Realization of an entanglement-assisted quantum delayed-choice experiment. Phys. Rev. A 92, 022126 (2015).
Zheng, S.-B. et al. Quantum delayed-choice experiment with a beam splitter in a quantum superposition. Phys. Rev. Lett. 115, 260403 (2015).
Liu, K. et al. A twofold quantum delayed-choice experiment in a superconducting circuit. Sci. Adv. 3, e1603159 (2017).
Chaves, R., Lemos, G. B. & Pienaar, J. Causal modeling the delayed-choice experiment. Phys. Rev. Lett. 120, 190401 (2018).
Polino, E. et al. Device independent certification of a quantum delayed choice experiment. Preprint at https://arxiv.org/abs/1806.00211 (2018).
Huang, H.-L. et al. Compatibility of causal hidden-variable theories with a delayed-choice experiment. Phys. Rev. A 100, 012114 (2019).
Yu, S. et al. Realization of a causal-modeled delayed-choice experiment using single photons. Phys. Rev. A 100, 012115 (2019).
Ionicioiu, R., Jennewein, T., Mann, R. B. & Terno, D. R. Is wave–particle objectivity compatible with determinism and locality? Nat. Commun. 5, 3997 (2014).
Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed sources. Ann. NY Acad. Sci. 755, 91–102 (1995).
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).
Langford, N. K. et al. Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005).
Kiesel, N., Schmid, C., Weber, U., Ursin, R. & Weinfurter, H. Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005).
Okamoto, R., Hofmann, H. F., Takeuchi, S. & Sasaki, K. Demonstration of an optical quantum controlled-not gate without path interference. Phys. Rev. Lett. 95, 210506 (2005).
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
Jacques, V. et al. Delayed-choice test of quantum complementarity with interfering single photons. Phys. Rev. Lett. 100, 220402 (2008).
Ma, X.-S. et al. Quantum erasure with causally disconnected choice. Proc. Natl Acad. Sci. USA 110, 1221–1226 (2013).
Acknowledgements
We thank J. Kofler and Č. Brukner for helpful discussions, and M. Chen for taking the birds-eye-view photograph of the experiment. This research is supported by the National Key Research and Development Program of China (2017YFA0303700), the National Natural Science Foundation of China (grants nos. 11690032, 11674170 and 11621091), the National Science Foundation of Jiangsu Province (no. BK20170010), the programme for Innovative Talents and Entrepreneur in Jiangsu and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Contributions
K.W., Q.X. and X.-s.M. designed and performed the experiment. K.W. and X.-s.M. analysed the data. K.W. and X.-s.M. wrote the manuscript with input from all authors. S.Z. and X.-s.M. supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary notes and figures.
Rights and permissions
About this article
Cite this article
Wang, K., Xu, Q., Zhu, S. et al. Quantum wave–particle superposition in a delayed-choice experiment. Nat. Photonics 13, 872–877 (2019). https://doi.org/10.1038/s41566-019-0509-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-019-0509-0
This article is cited by
-
Quantum causality emerging in a delayed-choice quantum Cheshire Cat experiment with neutrons
Scientific Reports (2023)
-
Observations of the delayed-choice quantum eraser using coherent photons
Scientific Reports (2023)
-
Method of constructing the entangled state of the particle system
Pramana (2023)
-
New quantum physics, solving puzzles of Wheeler’s delayed choice and a particle’s passing N slits simultaneously and quantum oscillator in experiments
Scientific Reports (2022)
-
Experimental assessment of physical realism in a quantum-controlled device
Communications Physics (2022)