Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of non-classical light in a photon-number superposition

Abstract

Generating light in a pure quantum state is essential for advancing optical quantum technologies. However, controlling its photon number remains elusive. Optical fields with zero and one photon can be produced by single atoms, but, so far, this has been limited to generating incoherent mixtures or coherent superpositions with a very small one-photon term. Here, we report the on-demand generation of quantum superpositions of zero, one and two photons via coherent control of an artificial atom. Driving the system up to full atomic inversion leads to quantum superpositions of vacuum and one photon, with their relative populations controlled by the driving laser intensity. A stronger driving of the system, with 2π pulses, results in a coherent superposition of vacuum, one and two photons, with the two-photon term exceeding the one-photon component, a state allowing phase super-resolving interferometry. Our results open new paths for optical quantum technologies with access to the photon-number degree of freedom.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coherent control of an artificial atom.
Fig. 2: Quantum superposition of vacuum and one photon.
Fig. 3: Quantum superposition of vacuum, one and two photons.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    ADS  Google Scholar 

  2. Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).

    Google Scholar 

  3. Waks, E., Diamanti, E. & Yamamoto, Y. Generation of photon number states. New J. Phys. 8, 4 (2006).

    ADS  Google Scholar 

  4. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    ADS  Google Scholar 

  5. Wang, X.-L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).

    ADS  Google Scholar 

  6. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    ADS  Google Scholar 

  7. Bunandar, D. et al. Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X 8, 021009 (2018).

    Google Scholar 

  8. Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).

    ADS  Google Scholar 

  9. Schwartz, O. et al. Superresolution microscopy with quantum emitters. Nano Lett. 13, 5832–5836 (2013).

    ADS  Google Scholar 

  10. Knill, E., Laamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Google Scholar 

  11. O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    ADS  Google Scholar 

  12. Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010).

    Google Scholar 

  13. Loredo, J. C. et al. Measuring entanglement in a photonic embedding quantum simulator. Phys. Rev. Lett. 116, 070503 (2016).

    ADS  Google Scholar 

  14. Chen, M.-C. et al. Efficient measurement of multiparticle entanglement with embedding quantum simulator. Phys. Rev. Lett. 116, 070502 (2016).

    ADS  Google Scholar 

  15. Santagati, R. et al. Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci. Adv. 4, eaap9646 (2018).

    ADS  Google Scholar 

  16. O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    ADS  Google Scholar 

  17. Patel, R. B., Ho, J., Ferreyrol, F., Ralph, T. C. & Pryde, G. J. A quantum Fredkin gate. Sci. Adv. 2, e1501531 (2016).

    ADS  Google Scholar 

  18. Wang, X.-L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).

    ADS  Google Scholar 

  19. Takeda, S., Fuwa, M., van Loock, P. & Furusawa, A. Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501 (2015).

    ADS  Google Scholar 

  20. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    ADS  Google Scholar 

  21. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    ADS  Google Scholar 

  22. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    ADS  Google Scholar 

  23. Kirsanske, G. et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys. Rev. B 96, 165306 (2017).

    ADS  Google Scholar 

  24. Lombardi, E., Sciarrino, F., Popescu, S. & De Martini, F. Teleportation of a vacuum-one-photon qubit. Phys. Rev. Lett. 88, 070402 (2002).

    ADS  Google Scholar 

  25. Gabriel, C. et al. A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4, 711–715 (2010).

    ADS  Google Scholar 

  26. Bimbard, E., Jain, N., MacRae, A. & Lvovsky, A. I. Quantum-optical state engineering up to the two-photon level. Nat. Photon. 4, 243–247 EP (2010).

    ADS  Google Scholar 

  27. Fuwa, M., Takeda, S., Zwierz, M., Wiseman, H. M. & Furusawa, A. Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurements. Nat. Commun. 6, 6665 (2015).

    ADS  Google Scholar 

  28. Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986).

    ADS  Google Scholar 

  29. Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    ADS  Google Scholar 

  30. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    ADS  Google Scholar 

  31. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    ADS  Google Scholar 

  32. Jessen, P. S. et al. Observation of quantized motion of Rb atoms in an optical field. Phys. Rev. Lett. 69, 49–52 (1992).

    ADS  Google Scholar 

  33. Nguyen, H. S. et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011).

    ADS  Google Scholar 

  34. Matthiesen, C., Vamivakas, A. N. & Atature, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

    ADS  Google Scholar 

  35. Matthiesen, C. et al. Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source. Nat. Commun. 4, 1600 (2013).

    ADS  Google Scholar 

  36. Proux, R. et al. Measuring the photon coalescence time window in the continuous-wave regime for resonantly driven semiconductor quantum dots. Phys. Rev. Lett. 114, 067401 (2015).

    ADS  Google Scholar 

  37. Schulte, C. H. H. et al. Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015).

    ADS  Google Scholar 

  38. Giesz, V. et al. Coherent manipulation of a solid-state artificial atom with few photons. Nat. Commun. 7, 11986 (2016).

    ADS  Google Scholar 

  39. Dousse, A. et al. Controlled light–matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett. 101, 267404 (2008).

    ADS  Google Scholar 

  40. Nowak, A. K. et al. Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014).

    ADS  Google Scholar 

  41. Fischer, K. A. et al. Signatures of two-photon pulses from a quantum two-level system. Nat. Phys. 13, 649–654 (2017).

    Google Scholar 

  42. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    ADS  Google Scholar 

  43. Fischer, K. A., Trivedi, R. & Lukin, D. Particle emission from open quantum systems. Phys. Rev. A 98, 023853 (2018).

    ADS  Google Scholar 

  44. Grange, T. et al. Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics. Phys. Rev. Lett. 118, 253602 (2017).

    ADS  Google Scholar 

  45. Valente, D. et al. Monitoring stimulated emission at the single-photon level in one-dimensional atoms. Phys. Rev. A 85, 023811 (2012).

    ADS  Google Scholar 

  46. Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011).

    ADS  Google Scholar 

  47. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    ADS  Google Scholar 

  48. Munoz, C. S. et al. Emitters of n-photon bundles. Nat. Photon. 8, 550–555 (2014).

    ADS  Google Scholar 

  49. Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro, W. J. & Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003).

    ADS  Google Scholar 

  50. Lund, A. P., Ralph, T. C. & Haselgrove, H. L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008).

    ADS  Google Scholar 

  51. Gilchrist, A. et al. Schrödinger cats and their power for quantum information processing. J. Opt. B 6, 5828–5833 (2004).

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by ERC Starting Grant no. 277885 QD-CQED, the French Agence Nationale pour la Recherche (grant ANR SPIQE and USSEPP), the French RENATECH network and a public grant overseen by the French National Research Agency (ANR) as part of the Investissements d’Avenir programme (Labex NanoSaclay, reference ANR-10-LABX-0035). J.C.L. and C.A. acknowledge support from Marie Skłodowska-Curie Individual Fellowships SMUPHOS and SQUAPH, respectively. We thank N. Carlon Zambon for providing technical assistance throughout the project.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conducted by J.C.L. and C.A. with help from P.H., C.M., H.O. and L.D.S. Data analysis was carried out by C.A. and J.C.L. The theoretical modelling was done by A.A., B.R., O.K., C.A. and J.C.L. The cavity devices were fabricated by A.H. and N.S. from samples grown by A.L., and the etching was done by I.S. The manuscript was written by J.C.L., C.A. and P.S. with input from all authors. The project was supervised by L.L., A.A., O.K. and P.S.

Corresponding authors

Correspondence to J. C. Loredo, C. Antón or P. Senellart.

Ethics declarations

Competing interests

N.S. is co-founder, and P.S. is scientific advisor and co-founder, of the single-photon-source company Quandela.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loredo, J.C., Antón, C., Reznychenko, B. et al. Generation of non-classical light in a photon-number superposition. Nat. Photonics 13, 803–808 (2019). https://doi.org/10.1038/s41566-019-0506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0506-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing