Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An integrated silicon photonic chip platform for continuous-variable quantum key distribution

Abstract

Quantum key distribution (QKD) is a quantum communication technology that promises unconditional communication security. High-performance and cost-effective QKD systems are essential for the establishment of quantum communication networks1,2,3. By integrating all the optical components (except the laser source) on a silicon photonic chip, we have realized a stable, miniaturized and low-cost system for continuous-variable QKD (CV-QKD) that is compatible with the existing fibre optical communication infrastructure4. Here, the integrated silicon photonic chip is demonstrated for CV-QKD. It implements the widely studied Gaussian-modulated coherent state protocol that encodes continuous distributed information on the quadrature of laser light5,6. Our proof-of-principle chip-based CV-QKD system is capable of producing a secret key rate of 0.14 kbps (under collective attack) over a simulated distance of 100 km in fibre, offering new possibilities for low-cost, scalable and portable quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the CV-QKD system.
Fig. 2: Scanning electron microscopy and optical microscopy images of the QKD chip.
Fig. 3: Chip performance analysis.
Fig. 4: Key distribution test.
Fig. 5: Secure key rate analysis.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Lo, H. K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014).

    Article  ADS  Google Scholar 

  2. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    ADS  Google Scholar 

  3. Orieux, A. & Diamanti, E. Recent advances on integrated quantum communications. J. Opt. 18, 083002 (2016).

    Article  ADS  Google Scholar 

  4. Diamanti, E., Lo, H. K., Qi, B. & Yuan, Z. L. Practical challenges in quantum key distribution. npj Quant. Inf. 2, 16025 (2016).

    Article  Google Scholar 

  5. Grosshans, F. & Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002).

    Article  ADS  Google Scholar 

  6. Grosshans, F. et al. Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003).

    Article  ADS  Google Scholar 

  7. Sibson, P. et al. Chip-based quantum key distribution. Nat. Commun. 8, 13984 (2017).

    Article  ADS  Google Scholar 

  8. Zhang, P. et al. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client. Phys. Rev. Lett. 112, 130501 (2014).

    Article  ADS  Google Scholar 

  9. Tanzilli, S. et al. On the genesis and evolution of integrated quantum optics. Laser Photon. Rev. 6, 115–143 (2012).

    Article  ADS  Google Scholar 

  10. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. Y. & O’Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  11. Davis, K. M., Miura, K., Sugimoto, N. & Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996).

    Article  ADS  Google Scholar 

  12. Huang, J. G. et al. Torsional frequency mixing and sensing in optomechanical resonators. Appl. Phys. Lett. 111, 111102 (2017).

    Article  ADS  Google Scholar 

  13. Shi, Y. Z. et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat. Commun. 9, 815 (2018).

    Article  ADS  Google Scholar 

  14. Shi, Y. et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci. Adv. 4, eaao0773 (2018).

    Article  ADS  Google Scholar 

  15. Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

    Article  ADS  Google Scholar 

  16. Yin, H. L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

    Article  ADS  Google Scholar 

  17. Ma, C. X. et al. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 3, 1274–1278 (2016).

    Article  ADS  Google Scholar 

  18. Ding, Y. H. et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quant. Inf. 3, 25 (2017).

    Article  ADS  Google Scholar 

  19. Sibson, P. et al. Integrated silicon photonics for high-speed quantum key distribution. Optica 4, 172–177 (2017).

    Article  ADS  Google Scholar 

  20. Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    Article  ADS  Google Scholar 

  21. Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).

    Article  ADS  Google Scholar 

  22. Lodewyck, J. et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76, 042305 (2007).

    Article  ADS  Google Scholar 

  23. Ziebell, M. et al. Towards on-chip continuous-variable quantum key distribution. In Conf. Lasers Electro-Optics (CLEO) Europe JSV-4.2 (Optical Society of America, 2015).

  24. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P. & Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7, 378–381 (2013).

    Article  ADS  Google Scholar 

  25. Huang, D., Huang, P., Lin, D. K. & Zeng, G. H. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016).

    Article  ADS  Google Scholar 

  26. Rude, M. et al. Interferometric photodetection in silicon photonics for phase diffusion quantum entropy sources. Opt. Express 26, 31957–31964 (2018).

    Article  ADS  Google Scholar 

  27. Raffaelli, F. et al. Generation of random numbers by measuring phase fluctuations from a laser diode with a silicon-on-insulator chip. Opt. Express 26, 19730–19741 (2018).

    Article  ADS  Google Scholar 

  28. Abellan, C. et al. Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica 3, 989–994 (2016).

    Article  ADS  Google Scholar 

  29. Raffaelli, F. et al. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol. 3, 025003 (2018).

    Article  ADS  Google Scholar 

  30. Lance, A. M. et al. No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95, 180503 (2005).

    Article  ADS  Google Scholar 

  31. Shen, Y., Zou, H. X., Tian, L. A., Chen, P. X. & Yuan, J. M. Experimental study on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 82, 022317 (2010).

    Article  ADS  Google Scholar 

  32. Wang, X. Y., Zhang, Y. C., Yu, S. & Guo, H. High speed error correction for continuous-variable quantum key distribution with multi-edge type LDPC code. Sci. Rep. 8, 10543 (2018).

    Article  ADS  Google Scholar 

  33. Milicevic, M., Feng, C., Zhang, L. M. & Gulak, P. G. Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography. npj Quant. Inf. 4, 21 (2018).

    Article  ADS  Google Scholar 

  34. Jouguet, P., Kunz-Jacques, S., Diamanti, E. & Leverrier, A. Analysis of imperfections in practical continuous-variable quantum key distribution. Phys. Rev. A 86, 032309 (2012).

    Article  ADS  Google Scholar 

  35. Qi, B., Lougovski, P., Pooser, R., Grice, W. & Bobrek, M. Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 5, 041009 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Singapore Ministry of Education (MOE) Tier 3 grant (MOE2017-T3-1-001), the Singapore National Research Foundation (NRF) National Natural Science Foundation of China (NSFC) joint grant (NRF2017NRF-NSFC002-014) and the Singapore National Research Foundation under the Competitive Research Program (NRF-CRP13-2014-01).

Author information

Authors and Affiliations

Authors

Contributions

G.Z., L.C.K. and A.Q.L. jointly conceived the idea. G.Z. and H.C. designed and fabricated the silicon photonic chip. G.Z., Y.Z., S.Y., J.W., W.S., F.X. and X.Z. performed the experiments. J.Y.H., S.M.A., J.F.F. and L.C.K. assisted with the theory. All authors contributed to the discussion of experimental results. F.X., L.C.K. and A.Q.L. supervised and coordinated all the work. G.Z., F.X., L.C.K. and A.Q.L. wrote the manuscript with contributions from all co-authors.

Corresponding authors

Correspondence to F. Xu, L. C. Kwek or A. Q. Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Haw, J.Y., Cai, H. et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics 13, 839–842 (2019). https://doi.org/10.1038/s41566-019-0504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0504-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing