Brillouin integrated photonics

Abstract

A recent renaissance in Brillouin scattering research has been driven by the increasing maturity of photonic integration platforms and nanophotonics. The result is a new breed of chip-based devices that exploit acousto-optic interactions to create lasers, amplifiers, filters, delay lines and isolators. Here, we provide a detailed overview of Brillouin scattering in integrated waveguides and resonators, covering key concepts such as the stimulation of the Brillouin process, in which the optical field itself induces acoustic vibrations, the importance of acoustic confinement, methods for calculating and measuring Brillouin gain, and the diversity of materials platforms and geometries. Our Review emphasizes emerging applications in microwave photonics, signal processing and sensing, and concludes with a perspective for future directions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of SBS.
Fig. 2: Different geometries used in on-chip SBS experiments.
Fig. 3: The gain for different Brillouin-active waveguides.
Fig. 4: Functionalities enabled by on-chip SBS.
Fig. 5: A chip-scale integrated microwave/RF processor for broadband communications.

References

  1. 1.

    Brillouin, L. Diffusion de la lumière par un corps transparent homogène. Ann. Phys. (Paris) 17, 88–122 (1922).

  2. 2.

    Mandelstam, L. I. Light scattering by inhomogeneous media. Zh. Russ. Fiz-Khim. 58, 381–386 (1926).

  3. 3.

    Garmire, E. Perspectives on stimulated Brillouin scattering. New J. Phys. 19, 011003 (2017).

  4. 4.

    Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  5. 5.

    Gross, E. Change of wavelength of light due to elastic heat waves at scattering in liquids. Nature 126, 201–202 (1930).

  6. 6.

    Krishnan, R. S. The scattering of light in fused quartz and its Raman spectrum. Proc. Indian Acad. Sci. Sect. A 37, 377–384 (1953).

  7. 7.

    Krishnan, R. S. & Chandrasekharan, V. Thermal scattering of light in crystals. Part I. Quartz. Proc. Indian Acad. Sci. Sect. A 31, 427–434 (1950).

  8. 8.

    Krishnan, R. Thermal scattering of light in diamond. Nature 159, 740–741 (1947).

  9. 9.

    Chandrasekharan, V. Thermal scattering of light in crytals. Part III. Theory for birefringent crystals. Proc. Indian Acad. Sci. Sect. A 33, 183–198 (1951).

  10. 10.

    Chandrasekharan, V. Thermal scattering of light in crystals. Part II. Diamond. Proc. Indian Acad. Sci. Sect. A 32, 379 (1950).

  11. 11.

    Chiao, R., Townes, C. & Stoicheff, B. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592–596 (1964).

  12. 12.

    Garmire, E. & Townes, C. H. Stimulated Brillouin scattering in liquids. Appl. Phys. Lett. 5, 84–86 (1964).

  13. 13.

    Williams, R. J. et al. Diamond Brillouin lasers. Preprint at https://arxiv.org/abs/1807.00240 (2018).

  14. 14.

    Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2012).

  15. 15.

    Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–97 (2018).

  16. 16.

    Ippen, E. P. & Stolen, R. H. Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett. 21, 539–541 (1972).

  17. 17.

    Kobyakov, A., Sauer, M. & Chowdhury, D. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon. 2, 1–59 (2010).

  18. 18.

    Hill, K. O., Kawasaki, B. S. & Johnson, D. C. CW Brillouin laser. Appl. Phys. Lett. 28, 608–609 (1976).

  19. 19.

    Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat. Phys. 2, 388–392 (2006).

  20. 20.

    Beugnot, J.-C., Sylvestre, T., Maillotte, H., Mélin, G. & Laude, V. Guided acoustic wave Brillouin scattering in photonic crystal fibers. Opt. Lett. 32, 17–19 (2007).

  21. 21.

    Rakich, P. T., Reinke, C., Camacho, R., Davids, P. & Wang, Z. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X 2, 011008 (2012).

  22. 22.

    Nikles, M., Thevenaz, L. & Robert, P. A. Brillouin gain spectrum characterization in single-mode optical fibers. J. Light. Technol. 15, 1842–1851 (1997).

  23. 23.

    Poulton, C. G., Pant, R. & Eggleton, B. J. Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides. J. Opt. Soc. Am. B 30, 2657–2664 (2013).

  24. 24.

    Pant, R. et al. On-chip stimulated Brillouin scattering. Opt. Express 19, 388–392 (2011).

  25. 25.

    Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun. 4, 1944 (2013).

  26. 26.

    Van Laer, R., Kuyken, B., Van Thourhout, D. & Baets, R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photon. 9, 199–203 (2015).

  27. 27.

    Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

  28. 28.

    Minardo, A., Bernini, R., Amato, L. & Zeni, L. Bridge monitoring using Brillouin fiber-optic sensors. IEEE Sens. J. 12, 145–150 (2011).

  29. 29.

    Grudinin, I. S., Matsko, A. B. & Maleki, L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett. 102, 043902 (2009).

  30. 30.

    Tomes, M. & Carmon, T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett. 102, 113601 (2009).

  31. 31.

    Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

  32. 32.

    Bahl, G., Tomes, M., Marquardt, F. & Carmon, T. Observation of spontaneous Brillouin cooling. Nat. Phys. 8, 203–207 (2012).

  33. 33.

    Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

  34. 34.

    Qiu, W., Rakich, P., Shin, H. & Dong, H. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt. Express 21, 31402–31419 (2013).

  35. 35.

    Sturmberg, B. et al. Finite element analysis of stimulated Brillouin scattering in integrated photonic waveguides. J. Light. Technol. https://doi.org/10.1109/JLT.2019.2920844 (2019).

  36. 36.

    Malinowski, M. & Fathpour, S. Fully tensorial elastic-wave mode solver for stimulated Brillouin scattering simulations in integrated photonics. Proc. SPIE XXVII Physics and Simulation of Optoelectronic Devices 10912, 1091215 (2019).

  37. 37.

    Wolff, C., Gutsche, P., Steel, M. J., Eggleton, B. J. & Poulton, C. G. Impact of nonlinear loss on stimulated Brillouin scattering. J. Opt. Soc. Am. B 32, 1968–1978 (2015).

  38. 38.

    Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

  39. 39.

    Choudhary, A. et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J. Light. Technol. 35, 846–854 (2017).

  40. 40.

    Aryanfar, I. et al. Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay. Opt. Lett. 42, 1313–1316 (2017).

  41. 41.

    Merklein, M. et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nat. Commun. 6, 6396 (2015).

  42. 42.

    Eggleton, B. J., Poulton, C. G. & Pant, R. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon. 5, 536–587 (2013).

  43. 43.

    Safavi-Naeini, A. H., Van Thourhout, D., Baets, R. & Van Laer, R. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica 6, 213–232 (2019).

  44. 44.

    Dostart, N., Kim, S. & Bahl, G. Giant gain enhancement in surface-confined resonant stimulated Brillouin scattering. Laser Photon. Rev. 9, 689–705 (2015).

  45. 45.

    Wolff, C., Steel, M. J., Eggleton, B. J. & Poulton, C. G. Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms and coupled mode analysis. Phys. Rev. A 92, 013836 (2015).

  46. 46.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

  47. 47.

    Butsch, A. et al. Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber. Phys. Rev. Lett. 109, 183904 (2012).

  48. 48.

    Florez, O. et al. Brillouin scattering self-cancellation. Nat. Commun. 7, 11759 (2016).

  49. 49.

    Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

  50. 50.

    Qiu, W., Rakich, P. T., Soljacic, M. & Wang, Z. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt. Express 21, 276–280 (2012).

  51. 51.

    Shin, H. et al. Control of coherent information via on-chip photonic–phononic emitter–receivers. Nat. Commun. 6, 6427 (2015).

  52. 52.

    Kittlaus, E. A., Shin, H. & Rakich, P. T. Large Brillouin amplification in silicon. Nat. Photon. 10, 463–467 (2016).

  53. 53.

    Kittlaus, E. A., Otterstrom, N. T. & Rakich, P. T. On-chip inter-modal Brillouin scattering. Nat. Commun. 8, 15819 (2017).

  54. 54.

    Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. St. J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nat. Phys. 5, 276–280 (2009).

  55. 55.

    Kang, M., Brenn, A. & Russell, P. St. J. All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber. Phys. Rev. Lett. 105, 153901 (2010).

  56. 56.

    Otterstrom, N. T. et al. Resonantly enhanced nonreciprocal silicon Brillouin amplifier. Preprint at https://arxiv.org/abs/1903.03907 (2019).

  57. 57.

    Dragic, P., Law, P.-C., Ballato, J., Hawkins, T. & Foy, P. Brillouin spectroscopy of YAG-derived optical fibers. Opt. Express 18, 10055–10067 (2010).

  58. 58.

    Dehghannasiri, R., Eftekhar, A. A. & Adibi, A. Raman-like stimulated Brillouin scattering in phononic-crystal-assisted silicon-nitride waveguides. Phys. Rev. A 96, 053836 (2017).

  59. 59.

    Dehghannasiri, R., Eftekhar, A. A. & Adibi, A. Observation of Stimulated Brillouin Scattering in Si3N4 waveguides. In IEEE Photon. Conf. 135–136 (IEEE, 2017).

  60. 60.

    Wolff, C., Soref, R., Poulton, C. G. & Eggleton, B. J. Germanium as a material for stimulated Brillouin scattering in the mid-infrared. Opt. Express 22, 30735–30747 (2014).

  61. 61.

    De Leonardis, F., Soref, R. A., Soltani, M. & Passaro, V. M. N. Stimulated Brillouin scattering in an AlGaN photonics platform operating in the visible spectral range. Sci. Rep. 8, 14849 (2018).

  62. 62.

    Zhu, J. et al. Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber. Photon. Res. 7, 8–13 (2019).

  63. 63.

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

  64. 64.

    Zhang, J.-Z. & Chang, R. K. Generation and suppression of stimulated Brillouin scattering in single liquid droplets. J. Opt. Soc. Am. B 6, 151–153 (1989).

  65. 65.

    Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

  66. 66.

    Li, J., Suh, M.-G. & Vahala, K. Microresonator Brillouin gyroscope. Optica 4, 346–348 (2017).

  67. 67.

    Bahl, G., Zehnpfennig, J., Tomes, M. & Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nat. Commun. 2, 403 (2011).

  68. 68.

    Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

  69. 69.

    Dong, C. H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 6193 (2015).

  70. 70.

    Kim, S., Xu, X., Taylor, J. M. & Bahl, G. Dynamically induced robust phonon transport and chiral cooling in an optomechanical system. Nat. Commun. 8, 205 (2017).

  71. 71.

    Sanders, G. A. et al. Fiber optic gyro development at Honeywell. In Proc. SPIE Fiber Optic Sensors and Applications XIII 9852, 985207 (SPIE, 2016).

  72. 72.

    Gundavarapu, S. et al. Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil. J. Light. Technol. 36, 1185–1191 (2018).

  73. 73.

    Smith, S. P., Zarinetchi, F. & Ezekiel, S. Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 16, 393–395 (1991).

  74. 74.

    Debut, A., Randoux, S. & Zemmouri, J. Linewidth narrowing in Brillouin lasers: theoretical analysis. Phys. Rev. A 62, 023803 (2000).

  75. 75.

    Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

  76. 76.

    Kabakova, I., Marpaung, D., Poulton, C. & Eggleton, B. Harnessing on-chip SBS. Opt. Photon. News 26, 34–39 (2015).

  77. 77.

    Kabakova, I. V. et al. Narrow linewidth Brillouin laser based on chalcogenide photonic chip. Opt. Lett. 38, 3208–3211 (2013).

  78. 78.

    Morrison, B. et al. Compact Brillouin devices through hybrid integration on silicon. Optica 4, 847–854 (2017).

  79. 79.

    Li, J., Lee, H. & Vahala, K. J. Low-noise Brillouin laser on a chip at 1064 nm. Opt. Lett. 39, 287–290 (2014).

  80. 80.

    Loh, W. et al. Dual-microcavity narrow-linewidth Brillouin laser. Optica 2, 225–232 (2015).

  81. 81.

    Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Science 360, 1113–1116 (2018).

  82. 82.

    Le Floch, S. & Cambon, P. Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers. J. Opt. Soc. Am. A 20, 1132–1137 (2003).

  83. 83.

    Li, J., Lee, H., Chen, T. & Vahala, K. J. Characterization of a high coherence, Brillouin microcavity laser on silicon. Opt. Express 20, 20170–20180 (2012).

  84. 84.

    Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

  85. 85.

    Seeds, A. J. & Williams, K. J. Microwave photonics. J. Light. Technol. 24, 2628–4641 (2006).

  86. 86.

    Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

  87. 87.

    Capmany, J., Ortega, B. & Pastor, D. A tutorial on microwave photonic filters. J. Light. Technol. 24, 201–229 (2006).

  88. 88.

    Campbell, C. Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic Press, 1998).

  89. 89.

    Vidal, B., Piqueras, M. A. & Martí, J. Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering. Opt. Lett. 32, 23–25 (2007).

  90. 90.

    Sancho, J. et al. Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers. IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).

  91. 91.

    Zhang, W. & Minasian, R. A. Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett. 23, 1775–1777 (2011).

  92. 92.

    Pant, R. et al. On-chip stimulated Brillouin scattering for microwave signal processing and generation. Laser Photon. Rev. 8, 653–666 (2014).

  93. 93.

    Byrnes, A. et al. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering. Opt. Express 20, 18836–18845 (2012).

  94. 94.

    Choudhary, A. et al. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters. Opt. Lett. 41, 436–439 (2016).

  95. 95.

    Marpaung, D. et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica 2, 76–83 (2015).

  96. 96.

    Marpaung, D., Pagani, M., Morrison, B. & Eggleton, B. J. Nonlinear integrated microwave photonics. J. Light. Technol. 32, 3421–3427 (2014).

  97. 97.

    Kittlaus, E. A., Kharel, P., Otterstrom, N. T., Wang, Z. & Rakich, P. T. RF-photonic filters via on-chip photonic–phononic emit–receive operations. J. Light. Technol. 36, 2803–2809 (2018).

  98. 98.

    Choudhary, A. et al. On-chip Brillouin purification for frequency comb-based coherent optical communications. Opt. Lett. 42, 5074–5077 (2017).

  99. 99.

    Giacoumidis, E. et al. Chip-based Brillouin processing for carrier recovery in self-coherent optical communications. Optica 5, 1191–1199 (2018).

  100. 100.

    Merklein, M. et al. Widely tunable, low phase noise microwave source based on a photonic chip. Opt. Lett. 41, 4633–4636 (2016).

  101. 101.

    Minasian, R. A. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006).

  102. 102.

    Merklein, M., Stiller, B. & Eggleton, B. J. Brillouin-based light storage and delay techniques. J. Opt. 20, 083003 (2018).

  103. 103.

    Liu, Y., Choudhary, A., Marpaung, D. & Eggleton, B. J. Chip-based Brillouin processing for phase control of RF signals. IEEE J. Quantum Electron. 54, 6300413 (2018).

  104. 104.

    Wang, Y. et al. Improved dual-wavelength-pumped supercontinuum generation in an all-fiber device. In Optoelectronic Materials and Devices V, Proc. SPIE-OSA 79870Z (Optical Society of America, 2010).

  105. 105.

    Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).

  106. 106.

    Pant, R. et al. Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering. Opt. Lett. 37, 969–971 (2012).

  107. 107.

    Mckay, L. et al. Brillouin-based phase shifter in a silicon waveguide. Preprint at https://arxiv.org/abs/1903.08363 (2019).

  108. 108.

    Song, K. Y., Lee, K. & Lee, S. B. Tunable optical delays based on Brillouin dynamic grating in optical fibers. Opt. Express 17, 10344–10349 (2009).

  109. 109.

    Santagiustina, M., Chin, S., Primerov, N., Ursini, L. & Thévenaz, L. All-optical signal processing using dynamic Brillouin gratings. Sci. Rep. 3, 1594 (2013).

  110. 110.

    Preuβler, S. et al. Quasi-light-storage based on time-frequency coherence. Opt. Express 17, 15790–15798 (2009).

  111. 111.

    Zhu, Z., Gauthier, D. J. & Boyd, R. W. Stored light in an optical fiber via stimulated Brillouin scattering. Science 318, 1748–1753 (2007).

  112. 112.

    Merklein, M., Stiller, B., Vu, K., Madden, S. J. & Eggleton, B. J. A chip-integrated coherent photonic-phononic memory. Nat. Commun. 8, 574 (2017).

  113. 113.

    Merklein, M., Stiller, B. & Eggleton, B. J. Brillouin-based light storage and delay techniques. J. Opt. 20, 083003 (2018).

  114. 114.

    Lenz, G., Eggleton, B. J., Madsen, C. K. & Slusher, R. E. Optical delay lines based on optical filters. IEEE J. Quantum Electron. 37, 525–532 (2001).

  115. 115.

    Aryanfar, I. et al. Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay. Opt. Lett. 42, 1313–1316 (2017).

  116. 116.

    Jalas, D. et al. What is — and what is not — an optical isolator. Nat. Photon. 7, 579–583 (2013).

  117. 117.

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

  118. 118.

    Kang, M. S., Butsch, A. & Russell, P. St. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

  119. 119.

    Kuhn, L., Heidrich, P. F. & Lean, E. G. Optical guided wave mode conversion by an acoustic surface wave. Appl. Phys. Lett. 19, 428–430 (1971).

  120. 120.

    Hwang, I. K., Yun, S. H. & Kim, B. Y. All-fiber-optic nonreciprocal modulator. Opt. Lett. 22, 507–509 (1997).

  121. 121.

    Huang, X. & Fan, S. Complete all-optical silica fiber isolator via stimulated Brillouin scattering. J. Light. Technol. 29, 2267–2275 (2011).

  122. 122.

    Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

  123. 123.

    Kittlaus, E. A., Otterstrom, N. T., Kharel, P., Gertler, S. & Rakich, P. T. Non-reciprocal interband Brillouin modulation. Nat. Photon. 12, 613–619 (2018).

  124. 124.

    Sohn, D. B., Kim, S. & Bahl, G. Breaking time-reversal symmetry with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–98 (2018).

  125. 125.

    Kim, J., Kim, S. & Bahl, G. Complete linear optical isolation at the microscale with ultralow loss. Sci. Rep. 7, 1647 (2017).

  126. 126.

    Bao, X., Webb, D. J. & Jackson, D. A. 32-km distributed temperature sensor based on Brillouin loss in an optical fiber. Opt. Lett. 18, 1561–1563 (1993).

  127. 127.

    Nikles, M., Thévenaz, L. & Robert, P. A. Simple distributed fiber sensor based on Brillouin gain spectrum analysis. Opt. Lett. 21, 758–760 (1996).

  128. 128.

    Minardo, A., Bernini, R., Amato, L. & Zeni, L. Bridge monitoring using Brillouin fiber-optic sensors. IEEE Sens. J. 12, 145–150 (2011).

  129. 129.

    Kurashima, T., Horiguchi, T. & Tateda, M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt. Lett. 15, 1038–1040 (1990).

  130. 130.

    Thévenaz, L. Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives. Front. Optoelectron. China 3, 13–21 (2010).

  131. 131.

    Hotate, K. & Hasegawa, T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation. IEICE Trans. Electron. 83, 405–412 (2000).

  132. 132.

    Fellay, A., Thévenaz, L., Facchini, M., Niklès, M. & Robert, P. Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution. In 12th Int. Conf. Optical Fiber Sensors OWD3 (OSA, 1997).

  133. 133.

    Hotate, K., Watanabe, R., He, Z. & Kishi, M. Measurement of Brillouin frequency shift distribution in PLC by Brillouin optical correlation domain analysis. In 12th Int. Conf. Optical Fiber Sensors 8421 (International Society for Optics and Photonics, 2012).

  134. 134.

    Zarifi, A. et al. Highly localized distributed Brillouin scattering response in a photonic integrated circuit. APL Photon. 3, 036101 (2018).

  135. 135.

    Zarifi, A. et al. Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations. Opt. Lett. 43, 3493–3496 (2018).

  136. 136.

    Zarifi, A. et al. On-chip correlation-based Brillouin sensing: design, experiment, and simulation. J. Opt. Soc. Am. B 36, 146–152 (2019).

  137. 137.

    Chow, D. M., Yang, Z., Soto, M. A. & Thévenaz, L. Distributed forward Brillouin sensor based on local light phase recovery. Nat. Commun. 9, 2990 (2018).

  138. 138.

    Bashan, G., Diamandi, H. H., London, Y., Preter, E. & Zadok, A. Optomechanical time-domain reflectometry. Nat. Commun. 9, 2991 (2018).

  139. 139.

    East, P. W. Fifty years of instantaneous frequency measurement. IET Radar, Sonar Navig. 6, 112–122 (2012).

  140. 140.

    Jiang, H. et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter. Optica 3, 30–34 (2016).

  141. 141.

    Scheuer, J. Fiber microcoil optical gyroscope. Opt. Lett. 34, 1630–1632 (2009).

  142. 142.

    Ferreira, M. F., Rocha, J. F. & Pinto, J. L. Analysis of the gain and noise characteristics of fiber Brillouin amplifiers. Opt. Quantum Electron. 26, 35–44 (1994).

  143. 143.

    Feng, C., Preussler, S. & Schneider, T. Sharp tunable and additional noise-free optical filter based on Brillouin losses. Photon. Res. 6, 132–137 (2018).

  144. 144.

    Mahendra, A. et al. High link performance of Brillouin-loss based microwave bandpass photonic filters. OSA Continuum 1, 1287–1297 (2018).

  145. 145.

    Wei, W., Yi, L., Jaouën, Y., Morvan, M. & Hu, W. Brillouin rectangular optical filter with improved selectivity and noise performance. IEEE Photon. Technol. Lett. 27, 1593–1596 (2015).

  146. 146.

    Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).

  147. 147.

    Rakich, P. T., Wang, Z. & Davids, P. Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion. Opt. Lett. 36, 217–219 (2011).

  148. 148.

    Laude, V. & Beugnot, J. C. Lagrangian description of Brillouin scattering and electrostriction in nanoscale optical waveguides. New J. Phys. 17, 125003 (2015).

  149. 149.

    Sipe, J. E. & Steel, M. J. A Hamiltonian treatment of stimulated Brillouin scattering in nonlinear integrated waveguides. New J. Phys. 18, 045004 (2016).

  150. 150.

    Kharel, P., Behunin, R. O., Renninger, W. H. & Rakich, P. T. Noise and dynamics in forward Brillouin interactions. Phys. Rev. A 93, 063806 (2016).

  151. 151.

    Van Laer, R., Baets, R. & Van Thourhout, D. Unifying Brillouin scattering and cavity optomechanics. Phys. Rev. A 93, 053828 (2016).

  152. 152.

    Wolff, C., Steel, M. J. & Poulton, C. G. Formal selection rules for Brillouin scattering in integrated waveguides and structured fibers. Opt. Express 22, 32489–32501 (2014).

  153. 153.

    NUMBAT: NUMerical Brillouin Analysis Tool https://science.mq.edu.au/~msteel/research/numbat.html (accessed 15 February 2017).

  154. 154.

    Malinowski, M. & Fathpour, S. Fully-tensorial elastic-wave mode-solver in FEniCS for stimulated Brillouin scattering modeling. Preprint at https://arxiv.org/abs/1812.02212 (2018).

  155. 155.

    Kashkanova, A. D. et al. Superfluid Brillouin optomechanics. Nat. Phys. 13, 74–79 (2017).

  156. 156.

    Chen, Y.-C., Kim, S. & Bahl, G. Brillouin cooling in a linear waveguide. New J. Phys. 18, 115004 (2016).

  157. 157.

    Zhu, L. & Fan, S. Near-complete violation of detailed balance in thermal radiation. Phys. Rev. B 90, 220301 (2014).

  158. 158.

    Ma, J. et al. On-chip optical isolator and nonreciprocal parity-time symmetry induced by stimulated Brillouin scattering. Preprint at https://arxiv.org/abs/1806.03169 (2018).

  159. 159.

    Kim, S., Taylor, J. M. & Bahl, G. Dynamic suppression of Rayleigh light scattering in dielectric resonators. Preprint at https://arxiv.org/abs/1803.02366 (2018).

  160. 160.

    Haigh, J. A., Nunnenkamp, A., Ramsay, A. J. & Ferguson, A. J. Triple-resonant Brillouin light scattering in magneto-optical cavities. Phys. Rev. Lett. 117, 133602 (2016).

  161. 161.

    Smith, M. J. A. et al. Metamaterial control of stimulated Brillouin scattering. Opt. Lett. 41, 2338–2341 (2016).

  162. 162.

    Madden, S. J. et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express 15, 14414–14421 (2007).

  163. 163.

    Van Laer, R., Bazin, A., Kuyken, B., Baets, R. & Van Thourhout, D. Net on-chip Brillouin gain based on suspended silicon nanowires. New J. Phys. 17, 115005 (2015).

  164. 164.

    Auld, B. A. Acoustic Fields and Waves in Solids (Krieger Publishing Company, 1990).

Download references

Acknowledgements

B.J.E. acknowledges support from Australian Research Council (ARC) Linkage grant (LP170100112) with Harris Corporation, AFOSR/AOARD (FA2386-16-1-4036) and the US Office of Naval Research Global (ONRG) (N62909-18-1-2013). M.J.S., B.J.E. and C.G.P. acknowledge the support of the Australian Research Council (ARC) (Discovery Project DP160101691. G.B. acknowledges support of the Office of Naval Research Director of Research Early Career Grant N00014-17-1-2209 and National Science Foundation grant EFMA-1627184.

Author information

All authors contributed to the writing of this manuscript.

Correspondence to Benjamin J. Eggleton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark