Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brillouin integrated photonics

Abstract

A recent renaissance in Brillouin scattering research has been driven by the increasing maturity of photonic integration platforms and nanophotonics. The result is a new breed of chip-based devices that exploit acousto-optic interactions to create lasers, amplifiers, filters, delay lines and isolators. Here, we provide a detailed overview of Brillouin scattering in integrated waveguides and resonators, covering key concepts such as the stimulation of the Brillouin process, in which the optical field itself induces acoustic vibrations, the importance of acoustic confinement, methods for calculating and measuring Brillouin gain, and the diversity of materials platforms and geometries. Our Review emphasizes emerging applications in microwave photonics, signal processing and sensing, and concludes with a perspective for future directions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of SBS.
Fig. 2: Different geometries used in on-chip SBS experiments.
Fig. 3: The gain for different Brillouin-active waveguides.
Fig. 4: Functionalities enabled by on-chip SBS.
Fig. 5: A chip-scale integrated microwave/RF processor for broadband communications.

References

  1. 1.

    Brillouin, L. Diffusion de la lumière par un corps transparent homogène. Ann. Phys. (Paris) 17, 88–122 (1922).

  2. 2.

    Mandelstam, L. I. Light scattering by inhomogeneous media. Zh. Russ. Fiz-Khim. 58, 381–386 (1926).

    Google Scholar 

  3. 3.

    Garmire, E. Perspectives on stimulated Brillouin scattering. New J. Phys. 19, 011003 (2017).

    ADS  Google Scholar 

  4. 4.

    Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  5. 5.

    Gross, E. Change of wavelength of light due to elastic heat waves at scattering in liquids. Nature 126, 201–202 (1930).

    ADS  MATH  Google Scholar 

  6. 6.

    Krishnan, R. S. The scattering of light in fused quartz and its Raman spectrum. Proc. Indian Acad. Sci. Sect. A 37, 377–384 (1953).

    Google Scholar 

  7. 7.

    Krishnan, R. S. & Chandrasekharan, V. Thermal scattering of light in crystals. Part I. Quartz. Proc. Indian Acad. Sci. Sect. A 31, 427–434 (1950).

    Google Scholar 

  8. 8.

    Krishnan, R. Thermal scattering of light in diamond. Nature 159, 740–741 (1947).

    ADS  Google Scholar 

  9. 9.

    Chandrasekharan, V. Thermal scattering of light in crytals. Part III. Theory for birefringent crystals. Proc. Indian Acad. Sci. Sect. A 33, 183–198 (1951).

    MATH  Google Scholar 

  10. 10.

    Chandrasekharan, V. Thermal scattering of light in crystals. Part II. Diamond. Proc. Indian Acad. Sci. Sect. A 32, 379 (1950).

    Google Scholar 

  11. 11.

    Chiao, R., Townes, C. & Stoicheff, B. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592–596 (1964).

    ADS  Google Scholar 

  12. 12.

    Garmire, E. & Townes, C. H. Stimulated Brillouin scattering in liquids. Appl. Phys. Lett. 5, 84–86 (1964).

    ADS  Google Scholar 

  13. 13.

    Williams, R. J. et al. Diamond Brillouin lasers. Preprint at https://arxiv.org/abs/1807.00240 (2018).

  14. 14.

    Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2012).

  15. 15.

    Sohn, D. B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–97 (2018).

    ADS  Google Scholar 

  16. 16.

    Ippen, E. P. & Stolen, R. H. Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett. 21, 539–541 (1972).

    ADS  Google Scholar 

  17. 17.

    Kobyakov, A., Sauer, M. & Chowdhury, D. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon. 2, 1–59 (2010).

    Google Scholar 

  18. 18.

    Hill, K. O., Kawasaki, B. S. & Johnson, D. C. CW Brillouin laser. Appl. Phys. Lett. 28, 608–609 (1976).

    ADS  Google Scholar 

  19. 19.

    Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat. Phys. 2, 388–392 (2006).

    Google Scholar 

  20. 20.

    Beugnot, J.-C., Sylvestre, T., Maillotte, H., Mélin, G. & Laude, V. Guided acoustic wave Brillouin scattering in photonic crystal fibers. Opt. Lett. 32, 17–19 (2007).

    ADS  Google Scholar 

  21. 21.

    Rakich, P. T., Reinke, C., Camacho, R., Davids, P. & Wang, Z. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X 2, 011008 (2012).

    Google Scholar 

  22. 22.

    Nikles, M., Thevenaz, L. & Robert, P. A. Brillouin gain spectrum characterization in single-mode optical fibers. J. Light. Technol. 15, 1842–1851 (1997).

    ADS  Google Scholar 

  23. 23.

    Poulton, C. G., Pant, R. & Eggleton, B. J. Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides. J. Opt. Soc. Am. B 30, 2657–2664 (2013).

    ADS  Google Scholar 

  24. 24.

    Pant, R. et al. On-chip stimulated Brillouin scattering. Opt. Express 19, 388–392 (2011).

    Google Scholar 

  25. 25.

    Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun. 4, 1944 (2013).

    ADS  Google Scholar 

  26. 26.

    Van Laer, R., Kuyken, B., Van Thourhout, D. & Baets, R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nat. Photon. 9, 199–203 (2015).

    ADS  Google Scholar 

  27. 27.

    Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).

    ADS  Google Scholar 

  28. 28.

    Minardo, A., Bernini, R., Amato, L. & Zeni, L. Bridge monitoring using Brillouin fiber-optic sensors. IEEE Sens. J. 12, 145–150 (2011).

    ADS  Google Scholar 

  29. 29.

    Grudinin, I. S., Matsko, A. B. & Maleki, L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett. 102, 043902 (2009).

    ADS  Google Scholar 

  30. 30.

    Tomes, M. & Carmon, T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett. 102, 113601 (2009).

    ADS  Google Scholar 

  31. 31.

    Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    ADS  Google Scholar 

  32. 32.

    Bahl, G., Tomes, M., Marquardt, F. & Carmon, T. Observation of spontaneous Brillouin cooling. Nat. Phys. 8, 203–207 (2012).

    Google Scholar 

  33. 33.

    Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    ADS  Google Scholar 

  34. 34.

    Qiu, W., Rakich, P., Shin, H. & Dong, H. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt. Express 21, 31402–31419 (2013).

    ADS  Google Scholar 

  35. 35.

    Sturmberg, B. et al. Finite element analysis of stimulated Brillouin scattering in integrated photonic waveguides. J. Light. Technol. https://doi.org/10.1109/JLT.2019.2920844 (2019).

    ADS  Google Scholar 

  36. 36.

    Malinowski, M. & Fathpour, S. Fully tensorial elastic-wave mode solver for stimulated Brillouin scattering simulations in integrated photonics. Proc. SPIE XXVII Physics and Simulation of Optoelectronic Devices 10912, 1091215 (2019).

    Google Scholar 

  37. 37.

    Wolff, C., Gutsche, P., Steel, M. J., Eggleton, B. J. & Poulton, C. G. Impact of nonlinear loss on stimulated Brillouin scattering. J. Opt. Soc. Am. B 32, 1968–1978 (2015).

    ADS  Google Scholar 

  38. 38.

    Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

    ADS  Google Scholar 

  39. 39.

    Choudhary, A. et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J. Light. Technol. 35, 846–854 (2017).

    ADS  Google Scholar 

  40. 40.

    Aryanfar, I. et al. Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay. Opt. Lett. 42, 1313–1316 (2017).

    ADS  Google Scholar 

  41. 41.

    Merklein, M. et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nat. Commun. 6, 6396 (2015).

    ADS  Google Scholar 

  42. 42.

    Eggleton, B. J., Poulton, C. G. & Pant, R. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon. 5, 536–587 (2013).

    Google Scholar 

  43. 43.

    Safavi-Naeini, A. H., Van Thourhout, D., Baets, R. & Van Laer, R. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica 6, 213–232 (2019).

    Google Scholar 

  44. 44.

    Dostart, N., Kim, S. & Bahl, G. Giant gain enhancement in surface-confined resonant stimulated Brillouin scattering. Laser Photon. Rev. 9, 689–705 (2015).

    ADS  Google Scholar 

  45. 45.

    Wolff, C., Steel, M. J., Eggleton, B. J. & Poulton, C. G. Stimulated Brillouin scattering in integrated photonic waveguides: forces, scattering mechanisms and coupled mode analysis. Phys. Rev. A 92, 013836 (2015).

    ADS  Google Scholar 

  46. 46.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Google Scholar 

  47. 47.

    Butsch, A. et al. Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber. Phys. Rev. Lett. 109, 183904 (2012).

    ADS  Google Scholar 

  48. 48.

    Florez, O. et al. Brillouin scattering self-cancellation. Nat. Commun. 7, 11759 (2016).

    ADS  Google Scholar 

  49. 49.

    Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

    ADS  Google Scholar 

  50. 50.

    Qiu, W., Rakich, P. T., Soljacic, M. & Wang, Z. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt. Express 21, 276–280 (2012).

    Google Scholar 

  51. 51.

    Shin, H. et al. Control of coherent information via on-chip photonic–phononic emitter–receivers. Nat. Commun. 6, 6427 (2015).

    ADS  Google Scholar 

  52. 52.

    Kittlaus, E. A., Shin, H. & Rakich, P. T. Large Brillouin amplification in silicon. Nat. Photon. 10, 463–467 (2016).

    ADS  Google Scholar 

  53. 53.

    Kittlaus, E. A., Otterstrom, N. T. & Rakich, P. T. On-chip inter-modal Brillouin scattering. Nat. Commun. 8, 15819 (2017).

    ADS  Google Scholar 

  54. 54.

    Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. St. J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nat. Phys. 5, 276–280 (2009).

    Google Scholar 

  55. 55.

    Kang, M., Brenn, A. & Russell, P. St. J. All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber. Phys. Rev. Lett. 105, 153901 (2010).

    ADS  Google Scholar 

  56. 56.

    Otterstrom, N. T. et al. Resonantly enhanced nonreciprocal silicon Brillouin amplifier. Preprint at https://arxiv.org/abs/1903.03907 (2019).

  57. 57.

    Dragic, P., Law, P.-C., Ballato, J., Hawkins, T. & Foy, P. Brillouin spectroscopy of YAG-derived optical fibers. Opt. Express 18, 10055–10067 (2010).

    ADS  Google Scholar 

  58. 58.

    Dehghannasiri, R., Eftekhar, A. A. & Adibi, A. Raman-like stimulated Brillouin scattering in phononic-crystal-assisted silicon-nitride waveguides. Phys. Rev. A 96, 053836 (2017).

    Google Scholar 

  59. 59.

    Dehghannasiri, R., Eftekhar, A. A. & Adibi, A. Observation of Stimulated Brillouin Scattering in Si3N4 waveguides. In IEEE Photon. Conf. 135–136 (IEEE, 2017).

  60. 60.

    Wolff, C., Soref, R., Poulton, C. G. & Eggleton, B. J. Germanium as a material for stimulated Brillouin scattering in the mid-infrared. Opt. Express 22, 30735–30747 (2014).

    ADS  Google Scholar 

  61. 61.

    De Leonardis, F., Soref, R. A., Soltani, M. & Passaro, V. M. N. Stimulated Brillouin scattering in an AlGaN photonics platform operating in the visible spectral range. Sci. Rep. 8, 14849 (2018).

    ADS  Google Scholar 

  62. 62.

    Zhu, J. et al. Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber. Photon. Res. 7, 8–13 (2019).

    Google Scholar 

  63. 63.

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    ADS  Google Scholar 

  64. 64.

    Zhang, J.-Z. & Chang, R. K. Generation and suppression of stimulated Brillouin scattering in single liquid droplets. J. Opt. Soc. Am. B 6, 151–153 (1989).

    ADS  Google Scholar 

  65. 65.

    Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

    ADS  Google Scholar 

  66. 66.

    Li, J., Suh, M.-G. & Vahala, K. Microresonator Brillouin gyroscope. Optica 4, 346–348 (2017).

    Google Scholar 

  67. 67.

    Bahl, G., Zehnpfennig, J., Tomes, M. & Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nat. Commun. 2, 403 (2011).

    ADS  Google Scholar 

  68. 68.

    Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Google Scholar 

  69. 69.

    Dong, C. H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 6193 (2015).

    ADS  Google Scholar 

  70. 70.

    Kim, S., Xu, X., Taylor, J. M. & Bahl, G. Dynamically induced robust phonon transport and chiral cooling in an optomechanical system. Nat. Commun. 8, 205 (2017).

    ADS  Google Scholar 

  71. 71.

    Sanders, G. A. et al. Fiber optic gyro development at Honeywell. In Proc. SPIE Fiber Optic Sensors and Applications XIII 9852, 985207 (SPIE, 2016).

  72. 72.

    Gundavarapu, S. et al. Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil. J. Light. Technol. 36, 1185–1191 (2018).

    ADS  Google Scholar 

  73. 73.

    Smith, S. P., Zarinetchi, F. & Ezekiel, S. Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 16, 393–395 (1991).

    ADS  Google Scholar 

  74. 74.

    Debut, A., Randoux, S. & Zemmouri, J. Linewidth narrowing in Brillouin lasers: theoretical analysis. Phys. Rev. A 62, 023803 (2000).

    ADS  Google Scholar 

  75. 75.

    Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

    ADS  Google Scholar 

  76. 76.

    Kabakova, I., Marpaung, D., Poulton, C. & Eggleton, B. Harnessing on-chip SBS. Opt. Photon. News 26, 34–39 (2015).

    ADS  Google Scholar 

  77. 77.

    Kabakova, I. V. et al. Narrow linewidth Brillouin laser based on chalcogenide photonic chip. Opt. Lett. 38, 3208–3211 (2013).

    ADS  Google Scholar 

  78. 78.

    Morrison, B. et al. Compact Brillouin devices through hybrid integration on silicon. Optica 4, 847–854 (2017).

    Google Scholar 

  79. 79.

    Li, J., Lee, H. & Vahala, K. J. Low-noise Brillouin laser on a chip at 1064 nm. Opt. Lett. 39, 287–290 (2014).

    ADS  Google Scholar 

  80. 80.

    Loh, W. et al. Dual-microcavity narrow-linewidth Brillouin laser. Optica 2, 225–232 (2015).

    Google Scholar 

  81. 81.

    Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Science 360, 1113–1116 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  82. 82.

    Le Floch, S. & Cambon, P. Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers. J. Opt. Soc. Am. A 20, 1132–1137 (2003).

    ADS  MathSciNet  Google Scholar 

  83. 83.

    Li, J., Lee, H., Chen, T. & Vahala, K. J. Characterization of a high coherence, Brillouin microcavity laser on silicon. Opt. Express 20, 20170–20180 (2012).

    ADS  Google Scholar 

  84. 84.

    Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    ADS  Google Scholar 

  85. 85.

    Seeds, A. J. & Williams, K. J. Microwave photonics. J. Light. Technol. 24, 2628–4641 (2006).

    Google Scholar 

  86. 86.

    Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

    ADS  Google Scholar 

  87. 87.

    Capmany, J., Ortega, B. & Pastor, D. A tutorial on microwave photonic filters. J. Light. Technol. 24, 201–229 (2006).

    ADS  Google Scholar 

  88. 88.

    Campbell, C. Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic Press, 1998).

  89. 89.

    Vidal, B., Piqueras, M. A. & Martí, J. Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering. Opt. Lett. 32, 23–25 (2007).

    ADS  Google Scholar 

  90. 90.

    Sancho, J. et al. Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers. IEEE Photon. Technol. Lett. 22, 1753–1755 (2010).

    ADS  Google Scholar 

  91. 91.

    Zhang, W. & Minasian, R. A. Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett. 23, 1775–1777 (2011).

    ADS  Google Scholar 

  92. 92.

    Pant, R. et al. On-chip stimulated Brillouin scattering for microwave signal processing and generation. Laser Photon. Rev. 8, 653–666 (2014).

    ADS  Google Scholar 

  93. 93.

    Byrnes, A. et al. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering. Opt. Express 20, 18836–18845 (2012).

    ADS  Google Scholar 

  94. 94.

    Choudhary, A. et al. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters. Opt. Lett. 41, 436–439 (2016).

    ADS  Google Scholar 

  95. 95.

    Marpaung, D. et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica 2, 76–83 (2015).

    Google Scholar 

  96. 96.

    Marpaung, D., Pagani, M., Morrison, B. & Eggleton, B. J. Nonlinear integrated microwave photonics. J. Light. Technol. 32, 3421–3427 (2014).

    ADS  Google Scholar 

  97. 97.

    Kittlaus, E. A., Kharel, P., Otterstrom, N. T., Wang, Z. & Rakich, P. T. RF-photonic filters via on-chip photonic–phononic emit–receive operations. J. Light. Technol. 36, 2803–2809 (2018).

    ADS  Google Scholar 

  98. 98.

    Choudhary, A. et al. On-chip Brillouin purification for frequency comb-based coherent optical communications. Opt. Lett. 42, 5074–5077 (2017).

    ADS  Google Scholar 

  99. 99.

    Giacoumidis, E. et al. Chip-based Brillouin processing for carrier recovery in self-coherent optical communications. Optica 5, 1191–1199 (2018).

    Google Scholar 

  100. 100.

    Merklein, M. et al. Widely tunable, low phase noise microwave source based on a photonic chip. Opt. Lett. 41, 4633–4636 (2016).

    ADS  Google Scholar 

  101. 101.

    Minasian, R. A. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006).

    ADS  Google Scholar 

  102. 102.

    Merklein, M., Stiller, B. & Eggleton, B. J. Brillouin-based light storage and delay techniques. J. Opt. 20, 083003 (2018).

    ADS  Google Scholar 

  103. 103.

    Liu, Y., Choudhary, A., Marpaung, D. & Eggleton, B. J. Chip-based Brillouin processing for phase control of RF signals. IEEE J. Quantum Electron. 54, 6300413 (2018).

    Google Scholar 

  104. 104.

    Wang, Y. et al. Improved dual-wavelength-pumped supercontinuum generation in an all-fiber device. In Optoelectronic Materials and Devices V, Proc. SPIE-OSA 79870Z (Optical Society of America, 2010).

  105. 105.

    Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).

    ADS  Google Scholar 

  106. 106.

    Pant, R. et al. Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering. Opt. Lett. 37, 969–971 (2012).

    ADS  Google Scholar 

  107. 107.

    Mckay, L. et al. Brillouin-based phase shifter in a silicon waveguide. Preprint at https://arxiv.org/abs/1903.08363 (2019).

  108. 108.

    Song, K. Y., Lee, K. & Lee, S. B. Tunable optical delays based on Brillouin dynamic grating in optical fibers. Opt. Express 17, 10344–10349 (2009).

    ADS  Google Scholar 

  109. 109.

    Santagiustina, M., Chin, S., Primerov, N., Ursini, L. & Thévenaz, L. All-optical signal processing using dynamic Brillouin gratings. Sci. Rep. 3, 1594 (2013).

    ADS  Google Scholar 

  110. 110.

    Preuβler, S. et al. Quasi-light-storage based on time-frequency coherence. Opt. Express 17, 15790–15798 (2009).

    ADS  Google Scholar 

  111. 111.

    Zhu, Z., Gauthier, D. J. & Boyd, R. W. Stored light in an optical fiber via stimulated Brillouin scattering. Science 318, 1748–1753 (2007).

    ADS  Google Scholar 

  112. 112.

    Merklein, M., Stiller, B., Vu, K., Madden, S. J. & Eggleton, B. J. A chip-integrated coherent photonic-phononic memory. Nat. Commun. 8, 574 (2017).

    ADS  Google Scholar 

  113. 113.

    Merklein, M., Stiller, B. & Eggleton, B. J. Brillouin-based light storage and delay techniques. J. Opt. 20, 083003 (2018).

    ADS  Google Scholar 

  114. 114.

    Lenz, G., Eggleton, B. J., Madsen, C. K. & Slusher, R. E. Optical delay lines based on optical filters. IEEE J. Quantum Electron. 37, 525–532 (2001).

    ADS  Google Scholar 

  115. 115.

    Aryanfar, I. et al. Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay. Opt. Lett. 42, 1313–1316 (2017).

    ADS  Google Scholar 

  116. 116.

    Jalas, D. et al. What is — and what is not — an optical isolator. Nat. Photon. 7, 579–583 (2013).

    ADS  Google Scholar 

  117. 117.

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    ADS  Google Scholar 

  118. 118.

    Kang, M. S., Butsch, A. & Russell, P. St. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon. 5, 549–553 (2011).

    ADS  Google Scholar 

  119. 119.

    Kuhn, L., Heidrich, P. F. & Lean, E. G. Optical guided wave mode conversion by an acoustic surface wave. Appl. Phys. Lett. 19, 428–430 (1971).

    ADS  Google Scholar 

  120. 120.

    Hwang, I. K., Yun, S. H. & Kim, B. Y. All-fiber-optic nonreciprocal modulator. Opt. Lett. 22, 507–509 (1997).

    ADS  Google Scholar 

  121. 121.

    Huang, X. & Fan, S. Complete all-optical silica fiber isolator via stimulated Brillouin scattering. J. Light. Technol. 29, 2267–2275 (2011).

    ADS  Google Scholar 

  122. 122.

    Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

    ADS  Google Scholar 

  123. 123.

    Kittlaus, E. A., Otterstrom, N. T., Kharel, P., Gertler, S. & Rakich, P. T. Non-reciprocal interband Brillouin modulation. Nat. Photon. 12, 613–619 (2018).

    ADS  Google Scholar 

  124. 124.

    Sohn, D. B., Kim, S. & Bahl, G. Breaking time-reversal symmetry with acoustic pumping of nanophotonic circuits. Nat. Photon. 12, 91–98 (2018).

    ADS  Google Scholar 

  125. 125.

    Kim, J., Kim, S. & Bahl, G. Complete linear optical isolation at the microscale with ultralow loss. Sci. Rep. 7, 1647 (2017).

    ADS  Google Scholar 

  126. 126.

    Bao, X., Webb, D. J. & Jackson, D. A. 32-km distributed temperature sensor based on Brillouin loss in an optical fiber. Opt. Lett. 18, 1561–1563 (1993).

    ADS  Google Scholar 

  127. 127.

    Nikles, M., Thévenaz, L. & Robert, P. A. Simple distributed fiber sensor based on Brillouin gain spectrum analysis. Opt. Lett. 21, 758–760 (1996).

    ADS  Google Scholar 

  128. 128.

    Minardo, A., Bernini, R., Amato, L. & Zeni, L. Bridge monitoring using Brillouin fiber-optic sensors. IEEE Sens. J. 12, 145–150 (2011).

    ADS  Google Scholar 

  129. 129.

    Kurashima, T., Horiguchi, T. & Tateda, M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt. Lett. 15, 1038–1040 (1990).

    ADS  Google Scholar 

  130. 130.

    Thévenaz, L. Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives. Front. Optoelectron. China 3, 13–21 (2010).

    Google Scholar 

  131. 131.

    Hotate, K. & Hasegawa, T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation. IEICE Trans. Electron. 83, 405–412 (2000).

    Google Scholar 

  132. 132.

    Fellay, A., Thévenaz, L., Facchini, M., Niklès, M. & Robert, P. Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution. In 12th Int. Conf. Optical Fiber Sensors OWD3 (OSA, 1997).

  133. 133.

    Hotate, K., Watanabe, R., He, Z. & Kishi, M. Measurement of Brillouin frequency shift distribution in PLC by Brillouin optical correlation domain analysis. In 12th Int. Conf. Optical Fiber Sensors 8421 (International Society for Optics and Photonics, 2012).

  134. 134.

    Zarifi, A. et al. Highly localized distributed Brillouin scattering response in a photonic integrated circuit. APL Photon. 3, 036101 (2018).

    ADS  Google Scholar 

  135. 135.

    Zarifi, A. et al. Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations. Opt. Lett. 43, 3493–3496 (2018).

    ADS  Google Scholar 

  136. 136.

    Zarifi, A. et al. On-chip correlation-based Brillouin sensing: design, experiment, and simulation. J. Opt. Soc. Am. B 36, 146–152 (2019).

    ADS  Google Scholar 

  137. 137.

    Chow, D. M., Yang, Z., Soto, M. A. & Thévenaz, L. Distributed forward Brillouin sensor based on local light phase recovery. Nat. Commun. 9, 2990 (2018).

    ADS  Google Scholar 

  138. 138.

    Bashan, G., Diamandi, H. H., London, Y., Preter, E. & Zadok, A. Optomechanical time-domain reflectometry. Nat. Commun. 9, 2991 (2018).

    ADS  Google Scholar 

  139. 139.

    East, P. W. Fifty years of instantaneous frequency measurement. IET Radar, Sonar Navig. 6, 112–122 (2012).

    MathSciNet  Google Scholar 

  140. 140.

    Jiang, H. et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter. Optica 3, 30–34 (2016).

    Google Scholar 

  141. 141.

    Scheuer, J. Fiber microcoil optical gyroscope. Opt. Lett. 34, 1630–1632 (2009).

    ADS  Google Scholar 

  142. 142.

    Ferreira, M. F., Rocha, J. F. & Pinto, J. L. Analysis of the gain and noise characteristics of fiber Brillouin amplifiers. Opt. Quantum Electron. 26, 35–44 (1994).

    Google Scholar 

  143. 143.

    Feng, C., Preussler, S. & Schneider, T. Sharp tunable and additional noise-free optical filter based on Brillouin losses. Photon. Res. 6, 132–137 (2018).

    Google Scholar 

  144. 144.

    Mahendra, A. et al. High link performance of Brillouin-loss based microwave bandpass photonic filters. OSA Continuum 1, 1287–1297 (2018).

    Google Scholar 

  145. 145.

    Wei, W., Yi, L., Jaouën, Y., Morvan, M. & Hu, W. Brillouin rectangular optical filter with improved selectivity and noise performance. IEEE Photon. Technol. Lett. 27, 1593–1596 (2015).

    ADS  Google Scholar 

  146. 146.

    Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).

    ADS  Google Scholar 

  147. 147.

    Rakich, P. T., Wang, Z. & Davids, P. Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion. Opt. Lett. 36, 217–219 (2011).

    ADS  Google Scholar 

  148. 148.

    Laude, V. & Beugnot, J. C. Lagrangian description of Brillouin scattering and electrostriction in nanoscale optical waveguides. New J. Phys. 17, 125003 (2015).

    ADS  Google Scholar 

  149. 149.

    Sipe, J. E. & Steel, M. J. A Hamiltonian treatment of stimulated Brillouin scattering in nonlinear integrated waveguides. New J. Phys. 18, 045004 (2016).

    ADS  Google Scholar 

  150. 150.

    Kharel, P., Behunin, R. O., Renninger, W. H. & Rakich, P. T. Noise and dynamics in forward Brillouin interactions. Phys. Rev. A 93, 063806 (2016).

    ADS  Google Scholar 

  151. 151.

    Van Laer, R., Baets, R. & Van Thourhout, D. Unifying Brillouin scattering and cavity optomechanics. Phys. Rev. A 93, 053828 (2016).

    ADS  Google Scholar 

  152. 152.

    Wolff, C., Steel, M. J. & Poulton, C. G. Formal selection rules for Brillouin scattering in integrated waveguides and structured fibers. Opt. Express 22, 32489–32501 (2014).

    ADS  Google Scholar 

  153. 153.

    NUMBAT: NUMerical Brillouin Analysis Tool https://science.mq.edu.au/~msteel/research/numbat.html (accessed 15 February 2017).

  154. 154.

    Malinowski, M. & Fathpour, S. Fully-tensorial elastic-wave mode-solver in FEniCS for stimulated Brillouin scattering modeling. Preprint at https://arxiv.org/abs/1812.02212 (2018).

  155. 155.

    Kashkanova, A. D. et al. Superfluid Brillouin optomechanics. Nat. Phys. 13, 74–79 (2017).

    Google Scholar 

  156. 156.

    Chen, Y.-C., Kim, S. & Bahl, G. Brillouin cooling in a linear waveguide. New J. Phys. 18, 115004 (2016).

    ADS  Google Scholar 

  157. 157.

    Zhu, L. & Fan, S. Near-complete violation of detailed balance in thermal radiation. Phys. Rev. B 90, 220301 (2014).

    ADS  Google Scholar 

  158. 158.

    Ma, J. et al. On-chip optical isolator and nonreciprocal parity-time symmetry induced by stimulated Brillouin scattering. Preprint at https://arxiv.org/abs/1806.03169 (2018).

  159. 159.

    Kim, S., Taylor, J. M. & Bahl, G. Dynamic suppression of Rayleigh light scattering in dielectric resonators. Preprint at https://arxiv.org/abs/1803.02366 (2018).

  160. 160.

    Haigh, J. A., Nunnenkamp, A., Ramsay, A. J. & Ferguson, A. J. Triple-resonant Brillouin light scattering in magneto-optical cavities. Phys. Rev. Lett. 117, 133602 (2016).

    ADS  Google Scholar 

  161. 161.

    Smith, M. J. A. et al. Metamaterial control of stimulated Brillouin scattering. Opt. Lett. 41, 2338–2341 (2016).

    ADS  Google Scholar 

  162. 162.

    Madden, S. J. et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express 15, 14414–14421 (2007).

    ADS  Google Scholar 

  163. 163.

    Van Laer, R., Bazin, A., Kuyken, B., Baets, R. & Van Thourhout, D. Net on-chip Brillouin gain based on suspended silicon nanowires. New J. Phys. 17, 115005 (2015).

    Google Scholar 

  164. 164.

    Auld, B. A. Acoustic Fields and Waves in Solids (Krieger Publishing Company, 1990).

Download references

Acknowledgements

B.J.E. acknowledges support from Australian Research Council (ARC) Linkage grant (LP170100112) with Harris Corporation, AFOSR/AOARD (FA2386-16-1-4036) and the US Office of Naval Research Global (ONRG) (N62909-18-1-2013). M.J.S., B.J.E. and C.G.P. acknowledge the support of the Australian Research Council (ARC) (Discovery Project DP160101691. G.B. acknowledges support of the Office of Naval Research Director of Research Early Career Grant N00014-17-1-2209 and National Science Foundation grant EFMA-1627184.

Author information

Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript.

Corresponding author

Correspondence to Benjamin J. Eggleton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eggleton, B.J., Poulton, C.G., Rakich, P.T. et al. Brillouin integrated photonics. Nat. Photonics 13, 664–677 (2019). https://doi.org/10.1038/s41566-019-0498-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing