Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards optimal single-photon sources from polarized microcavities


An optimal single-photon source should deterministically deliver one, and only one, photon at a time, with no trade-off between the source’s efficiency and the photon indistinguishability. However, all reported solid-state sources of indistinguishable single photons had to rely on polarization filtering, which reduced the efficiency by 50%, fundamentally limiting the scaling of photonic quantum technologies. Here, we overcome this long-standing challenge by coherently driving quantum dots deterministically coupled to polarization-selective Purcell microcavities. We present two examples: narrowband, elliptical micropillars and broadband, elliptical Bragg gratings. A polarization-orthogonal excitation–collection scheme is designed to minimize the polarization filtering loss under resonant excitation. We demonstrate a polarized single-photon efficiency of 0.60 ± 0.02 (0.56 ± 0.02), a single-photon purity of 0.975 ± 0.005 (0.991 ± 0.003) and an indistinguishability of 0.975 ± 0.006 (0.951 ± 0.005) for the micropillar (Bragg grating) device. Our work provides promising solutions for truly optimal single-photon sources combining near-unity indistinguishability and near-unity system efficiency simultaneously.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Theoretical scheme of a polarized single-photon source by resonantly pumping a quantum emitter in a birefringent microcavity.
Fig. 2: Characterization of the elliptical micropillar and elliptical Bragg grating.
Fig. 3: Deterministic generation of polarized single photons under resonant excitation.
Fig. 4: Single-photon purity and indistinguishability.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    ADS  Google Scholar 

  2. 2.

    Yin, J. et al. Satellite-based entanglement distribution over 1,200 kilometers. Science 356, 1140–1144 (2017).

    Google Scholar 

  3. 3.

    Chu, X. L., Gotzinger, S. & Sandoghdar, V. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light. Nat. Photon. 11, 58–62 (2017).

    ADS  Google Scholar 

  4. 4.

    Slussarenko, S. et al. Unconditional violation of the shot-noise limit in photonic quantum metrology. Nat. Photon. 11, 700–703 (2017).

    ADS  Google Scholar 

  5. 5.

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    ADS  Google Scholar 

  6. 6.

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. 43rd Annu. ACM Symp. Theory of Computing 333–342 (ACM, 2011).

  7. 7.

    Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    ADS  Google Scholar 

  8. 8.

    Shields, A. J. Semiconductor quantum light sources. Nat. Photon. 1, 215–223 (2007).

    ADS  Google Scholar 

  9. 9.

    Buckley, S., Rivoire, K. & Vučković, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 75, 126503 (2012).

    ADS  Google Scholar 

  10. 10.

    Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    ADS  MathSciNet  Google Scholar 

  11. 11.

    Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    ADS  Google Scholar 

  12. 12.

    Gerard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    ADS  Google Scholar 

  13. 13.

    Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    ADS  Google Scholar 

  14. 14.

    Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    ADS  Google Scholar 

  15. 15.

    He, Y. M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

    ADS  Google Scholar 

  16. 16.

    Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    ADS  Google Scholar 

  17. 17.

    Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    ADS  Google Scholar 

  18. 18.

    Madsen, K. H. et al. Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity. Phys. Rev. B 90, 155303 (2014).

    ADS  Google Scholar 

  19. 19.

    Liu, F. et al. High Purcell factor generation of coherent on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).

    ADS  Google Scholar 

  20. 20.

    Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

    ADS  Google Scholar 

  21. 21.

    Kuhlmann, A. V. et al. Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015).

    ADS  Google Scholar 

  22. 22.

    Wang, H. et al. High efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

    ADS  Google Scholar 

  23. 23.

    Neville, A. et al. Classical boson sampling algorithms with superior performance to near-term experiments. Nat. Phys. 13, 1153–1157 (2017).

    Google Scholar 

  24. 24.

    Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    ADS  Google Scholar 

  25. 25.

    Vamivakas, A. N., Zhao, Y., Lu, C. Y. & Atature, M. Spin-resolved quantum-dot resonance fluorescence. Nat. Phys. 5, 198–202 (2009).

    Google Scholar 

  26. 26.

    Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    ADS  Google Scholar 

  27. 27.

    Ates, S. et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).

    ADS  Google Scholar 

  28. 28.

    Davanço, M., Rakher, M. T., Schuh, D., Badolato, A. & Srinivasan, K. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl. Phys. Lett. 99, 041102 (2011).

    ADS  Google Scholar 

  29. 29.

    Sapienza, L., Davanço, M., Badolato, A. & Srinivasan, K. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun. 6, 7833 (2015).

    ADS  Google Scholar 

  30. 30.

    Srinivasan, K. & Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature 450, 862–865 (2007).

    ADS  Google Scholar 

  31. 31.

    Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4, 174–177 (2010).

    ADS  Google Scholar 

  32. 32.

    Munsch, M. et al. Linearly polarized, single-mode spontaneous emission in a photonic nanowire. Phys. Rev. Lett. 108, 077405 (2012).

    ADS  Google Scholar 

  33. 33.

    Gayral, B., Gérard, J. M., Legrand, B., Costard, E. & Thierry-Mieg, V. Optical study of GaAs/AlAs pillar microcavities with elliptical cross section. Appl. Phys. Lett. 72, 1421–1423 (1998).

    ADS  Google Scholar 

  34. 34.

    Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

    ADS  Google Scholar 

  35. 35.

    Unitt, D. C., Bennett, A. J., Atkinson, P., Ritchie, D. A. & Shields, A. J. Polarization control of quantum dot single-photon sources via a dipole-dependent Purcell effect. Phys. Rev. B 72, 033318 (2005).

    ADS  Google Scholar 

  36. 36.

    Lee, Y. & Lin, S. Polarized emission of quantum dots in microcavity and anisotropic Purcell factors. Opt. Express 22, 1512–1523 (2014).

    ADS  Google Scholar 

  37. 37.

    Daraei, A. et al. Control of polarized single quantum dot emission in high-quality-factor microcavity pillars. Appl. Phys. Lett. 88, 051113 (2006).

    ADS  Google Scholar 

  38. 38.

    Strauf, S. et al. High-frequency single-photon source with polarization control. Nat. Photon. 1, 704–708 (2007).

    ADS  Google Scholar 

  39. 39.

    Moreau, E. et al. A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar. Physica E 13, 418–422 (2002).

    ADS  Google Scholar 

  40. 40.

    Li, L. Z. et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett. 15, 1493–1497 (2015).

    ADS  Google Scholar 

  41. 41.

    Chen, X.-W., Gotzinger, S. & Sandoghdar, V. 99% efficiency in collecting photons from a single emitter. Opt. Lett. 36, 3545–3547 (2011).

    ADS  Google Scholar 

  42. 42.

    Reimer, M. E. et al. Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012).

    ADS  Google Scholar 

  43. 43.

    Fischbach, S. et al. Efficient single-photon source based on a deterministically fabricated single quantum dot-microstructure with backside gold mirror. Appl. Phys. Lett. 111, 011106 (2017).

    ADS  Google Scholar 

  44. 44.

    Chen, Y., Zopf, M., Keil, R., Ding, F. & Schmidt, O. G. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun. 9, 2994 (2018).

    ADS  Google Scholar 

  45. 45.

    Abudayyeh, H. A. & Rapaport, R. Quantum emitters coupled to circular nanoantennas for high-brightness quantum light sources. Quantum Sci. Technol. 2, 034004 (2017).

    ADS  Google Scholar 

  46. 46.

    Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

    ADS  Google Scholar 

  47. 47.

    Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    ADS  Google Scholar 

  48. 48.

    Kaer, P., Gregersen, N. & Mørk, J. The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems. New J. Phys. 15, 035027 (2013).

    ADS  Google Scholar 

  49. 49.

    Rivera, T. et al. Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy. Appl. Phys. Lett. 74, 911–913 (1999).

    ADS  Google Scholar 

  50. 50.

    Winkler, K. et al. High quality factor GaAs microcavity with buried bullseye defects. Phys. Rev. Mater. 2, 052201 (2018).

    Google Scholar 

  51. 51.

    Liu, J. et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).

    ADS  Google Scholar 

  52. 52.

    Iles-Smith, J., McCutcheon, D. P. S., Nazir, A. & Mørk, J. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat. Photon. 11, 521–526 (2017).

    Google Scholar 

  53. 53.

    O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    ADS  Google Scholar 

  54. 54.

    Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018).

    ADS  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (grant no. 11525419, 91836303, 11674308), the Chinese Academy of Science, the Anhui Initiative in Quantum Information Technologies, the Science and Technology Commission of Shanghai Municipality, the National Fundamental Research Program (grant no. 2018YFA0306104) and the State of Bavaria.

Author information




C.-Y.L. and J.-W.P. conceived the research, and M.-C.C., C.-Y.L. and J.-W.P. designed the protocol. S.G., K.W., J.J. and S.H. grew the quantum dot samples. X.D. performed the optical imaging for positioning the quantum dots. H.W., Y.-M.H. and C.-Y.L. designed the parameters of the microcavities. Y.Y., S.C., L.-J.W. and S.Y. etched the micropillars. T.H.C., H.H., X.Y., Y.-H.H. and Q.D. etched the bullseyes. H.W., Y.-M.H., J.Q., R.-Z.L., Z.-C.D., J.-P.L. and C.-Y.L. performed the resonant optical excitation and quantum optics measurements. H.W. and N.G. performed theoretical simulations and numerical analyses. All authors discussed the results and prepared the manuscript. C.-Y.L. and J.-W.P. supervised the project.

Corresponding authors

Correspondence to Chao-Yang Lu or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., He, YM., Chung, TH. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics 13, 770–775 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing