Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Graphene photonic crystal fibre with strong and tunable light–matter interaction

Subjects

Abstract

The integration of photonic crystal fibre (PCF) with various functional materials has greatly expanded the application regimes of optical fibre1,2,3,4,5,6,7,8,9,10,11,12. The emergence of graphene (Gr) has stimulated new opportunities when combined with PCF, allowing for electrical tunability, a broadband optical response and all-fibre integration ability13,14,15,16,17,18. However, previous demonstrations have typically been limited to micrometre-sized samples, far behind the requirements of real applications at the metre-scale level. Here, we demonstrate a new hybrid material, Gr–PCF, with length up to half a metre, produced using a chemical vapour deposition method. The Gr–PCF shows a strong light–matter interaction with ~8 dB cm−1 attenuation. In addition, the Gr–PCF-based electro-optic modulator demonstrates a broadband response (1,150–1,600 nm) and large modulation depth (~20 dB cm−1 at 1,550 nm) under a low gate voltage of ~2 V. Our results could enable industrial-level graphene applications based on this Gr–PCF and suggest an attractive platform for two-dimensional material-PCF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth and characterization of Gr–PCF.
Fig. 2: Controlled growth of a uniform graphene film on the hole walls of the PCF.
Fig. 3: Strong light–matter interaction in Gr–PCF.
Fig. 4: Tunable light–matter interaction in Gr–PCF.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    Article  ADS  Google Scholar 

  2. Knight, J. C. Photonic crystal fibres. Nature 424, 847–851 (2003).

    Article  ADS  Google Scholar 

  3. Ouzounov, D. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003).

    Article  ADS  Google Scholar 

  4. Bartels, R. A. et al. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376–378 (2002).

    Article  ADS  Google Scholar 

  5. Couny, F., Benabid, F., Roberts, P. J., Light, P. S. & Raymer, M. G. Generation and photonic guidance of multi-octave optical-frequency combs. Science 318, 1118–1121 (2007).

    Article  ADS  Google Scholar 

  6. Dudley, J. M. & Taylor, J. R. Ten years of nonlinear optics in photonic crystal fibre. Nat. Photon. 3, 85–90 (2009).

    Article  ADS  Google Scholar 

  7. Jiang, X. et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat. Photon. 9, 133–139 (2015).

    Article  ADS  Google Scholar 

  8. Benabid, F., Knight, J. C., Antonopoulos, G. & Russell, P. S. J. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399–402 (2002).

    Article  ADS  Google Scholar 

  9. Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007).

    Article  ADS  Google Scholar 

  10. He, R. R. et al. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nat. Photon. 6, 174–179 (2012).

    Article  ADS  Google Scholar 

  11. Kottig, F. et al. Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion. Nat. Commun. 8, 813 (2017).

    Article  ADS  Google Scholar 

  12. Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    Article  ADS  Google Scholar 

  13. Choi, S. Y. et al. Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking. Opt. Express 20, 5652–5657 (2012).

    Article  ADS  Google Scholar 

  14. Martinez, A. & Sun, Z. P. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photon. 7, 842–845 (2013).

    Article  ADS  Google Scholar 

  15. Lin, Y.-H., Yang, C.-Y., Liou, J.-H., Yu, C.-P. & Lin, G.-R. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser. Opt. Express 21, 16763–16776 (2013).

    Article  ADS  Google Scholar 

  16. Bao, Q. L. et al. Broadband graphene polarizer. Nat. Photon. 5, 411–415 (2011).

    Article  ADS  Google Scholar 

  17. Li, W. et al. Ultrafast all-optical graphene modulator. Nano Lett. 14, 955–959 (2014).

    Article  ADS  Google Scholar 

  18. Lee, E. J. et al. Active control of all-fibre graphene devices with electrical gating. Nat. Commun. 6, 6851 (2015).

    Article  ADS  Google Scholar 

  19. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  20. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  21. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  ADS  Google Scholar 

  22. Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    Article  ADS  Google Scholar 

  23. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  24. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    Article  ADS  Google Scholar 

  25. Gan, X. T. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photon. 7, 883–887 (2013).

    Article  ADS  Google Scholar 

  26. Polat, E. O. & Kocabas, C. Broadband optical modulators based on graphene supercapacitors. Nano Lett. 13, 5851–5857 (2013).

    Article  ADS  Google Scholar 

  27. Guo, Q. et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 17, 986–992 (2018).

    Article  ADS  Google Scholar 

  28. Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    Article  ADS  Google Scholar 

  29. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008).

    Article  ADS  Google Scholar 

  30. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  ADS  Google Scholar 

  31. Phare, C. T., Lee, Y. H. D., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

    Article  ADS  Google Scholar 

  32. Lin, H. T. et al. Chalcogenide glass-on-graphene photonics. Nat. Photon. 11, 798–805 (2017).

    Article  ADS  Google Scholar 

  33. Sorianello, V. et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

    Article  ADS  Google Scholar 

  34. Yao, B. C. et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature 558, 410–414 (2018).

    Article  ADS  Google Scholar 

  35. Sun, J. Y. et al. Graphene glass from direct CVD routes: production and applications. Adv. Mater. 28, 10333–10339 (2016).

    Article  Google Scholar 

  36. Wang, H. et al. Surface monocrystallization of copper foil for fast growth of large single-crystal graphene under free molecular flow. Adv. Mater. 28, 8968–8974 (2016).

    Article  Google Scholar 

  37. Sato, K. et al. D-band raman intensity of graphitic materials as a function of laser energy and crystallite size. Chem. Phys. Lett. 427, 117–121 (2006).

    Article  ADS  Google Scholar 

  38. Knudsen, M. The Kinetic Theory of Gases (Methuen, 1952).

  39. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010).

    Article  ADS  Google Scholar 

  40. Fujimoto, T. & Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013).

    Article  Google Scholar 

  41. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    Article  ADS  Google Scholar 

  42. Yamashita, S. Nonlinear optics in carbon nanotube, graphene and related 2D materials. APL Photon. 4, 034301 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0200103, 2016YFA0300903, 2016YFA0300804), Beijing Graphene Innovation Program (Z181100004818003, Z161100002116028), NSFC (51432002, 51520105003, 51502077, 51522201, 11474006), Beijing Municipal Science & Technology Commission (Z181100004218006), the National Equipment Program of China (ZDYZ2015-1), the Postdoctoral Innovative Personnel Support Program (BX20180013), The Science and Technology Development Project of Henan Province (182102210029), Zhongyuan Thousand Talents Program of Henan Province, the Young Talents Program of Henan University, the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under contract no. DE-AC02-05-CH11231 (SP2 program), the Academy of Finland (276376, 295777, 312297, 314810), the Academy of Finland Flagship Programme (320167, PREIN), the ERC (834742) and the European Union’s Horizon 2020 research and innovation programme (820423, S2QUIP)

Author information

Authors and Affiliations

Authors

Contributions

Z.L. and K.L. supervised the project. Z.L. and K.C. conceived the material growth. K.L. and X.Z. conceived the optical measurement. K.C. and X.Z. carried out the material growth experiment and optical device measurements. X.C. performed theoretical modelling. K.C., R.Q., Y.C., Y.X., X.Z., C.L. and F.Y. conducted SEM, TEM, AFM and Raman characterizations. W.Y. suggested the optical experiments. F.Y. programmed the measurement software. Z.S. and F.W. suggested the modulator. All authors contributed to the scientific discussion and writing of the manuscript.

Corresponding authors

Correspondence to Kaihui Liu or Zhongfan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figs. 1–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Zhou, X., Cheng, X. et al. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photonics 13, 754–759 (2019). https://doi.org/10.1038/s41566-019-0492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0492-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing