Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators


Parametric nonlinear optical processes allow for the generation of new wavelengths of coherent electromagnetic radiation. Their ability to create radiation that is widely tunable in wavelength is particularly appealing, with applications ranging from spectroscopy to quantum information processing. Unfortunately, existing tunable parametric sources are marred by deficiencies that obstruct their widespread adoption. Here, we show that ultrahigh-Q crystalline microresonators made of magnesium fluoride can overcome these limitations, enabling compact and power-efficient devices capable of generating clean and widely tunable sidebands. We consider several different resonators with carefully engineered dispersion profiles, achieving hundreds of nanometres of sideband tunability in each device. In addition to direct observations of discrete tunability over an optical octave from 1,083 nm to 2,670 nm, we record signatures of mid-infrared sidebands at almost 4,000 nm. The simplicity of the demonstrated devices—compounded by their remarkable tunability—paves the way for low-cost, widely tunable sources of electromagnetic radiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Scheme description and resonator modelling.
Fig. 2: Experimental set-up and illustrative results.
Fig. 3: Experimental observations of octave-tunability and signatures of mid-IR sidebands.
Fig. 4: Proof-of-concept demonstration of continuous sideband tunability.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    ADS  Article  Google Scholar 

  2. 2.

    Strekalov, D. V., Marquardt, C., Matsko, A. B., Schwefel, H. G. L. & Leuchs, G. Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 18, 123002 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Fürst, J. U. et al. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104, 153901 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    ADS  Article  Google Scholar 

  5. 5.

    Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    ADS  Article  Google Scholar 

  6. 6.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Article  Google Scholar 

  8. 8.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    Webb, K. E., Erkintalo, M., Coen, S. & Murdoch, S. G. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Opt. Lett. 41, 4613–4616 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Xue, X. et al. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl. 6, e16253 (2017).

    Article  Google Scholar 

  13. 13.

    Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  15. 15.

    Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Fülöp, A. et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun. 9, 1598 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Lin, C., Reed, W. A., Pearson, A. D. & Shang, H.-T. Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing. Opt. Lett. 6, 493–495 (1981).

    ADS  Article  Google Scholar 

  24. 24.

    Harvey, J. D. et al. Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber. Opt. Lett. 28, 2225–2227 (2003).

    ADS  Article  Google Scholar 

  25. 25.

    Pitois, S. & Millot, G. Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber. Opt. Commun. 226, 415–422 (2003).

    ADS  Article  Google Scholar 

  26. 26.

    Wong, G. K. L., Murdoch, S. G., Leonhardt, R., Harvey, J. D. & Marie, V. High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator. Opt. Express 15, 2947–2952 (2007).

    ADS  Article  Google Scholar 

  27. 27.

    Bessin, F., Copie, F., Conforti, M., Kudlinski, A. & Mussot, A. Modulation instability in the weak normal dispersion region of passive fiber ring cavities. Opt. Lett. 42, 3730–3733 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Liang, W. et al. Miniature multioctave light source based on a monolithic microcavity. Optica 2, 40–47 (2015).

    Article  Google Scholar 

  29. 29.

    Matsko, A. B., Savchenkov, A. A., Huang, S.-W. & Maleki, L. Clustered frequency comb. Opt. Lett. 41, 5102–5105 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Sayson, N. L. B., Webb, K. E., Coen, S., Erkintalo, M. & Murdoch, S. G. Widely tunable optical parametric oscillation in a Kerr microresonator. Opt. Lett. 42, 5190–5193 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Fujii, S., Kato, T., Suzuki, R. & Tanabe, T. Third-harmonic blue light generation from Kerr clustered combs and dispersive waves. Opt. Lett. 42, 2010–2013 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    Huang, S.-W. et al. Quasi-phase-matched multispectral Kerr frequency comb. Opt. Lett. 42, 2110–2113 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Grudinin, I. S., Mansour, K. & Yu, N. Properties of fluoride microresonators for mid-IR applications. Opt. Lett. 41, 2378–2381 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Sedlmeir, F., Hauer, M., Fürst, J. U., Leuchs, G. & Schwefel, H. G. L. Experimental characterization of an uniaxial angle cut whispering gallery mode resonator. Opt. Express 21, 23942–23949 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Wang, C. Y. et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun. 4, 1345 (2013).

    ADS  Article  Google Scholar 

  36. 36.

    Lin, G. & Chembo, Y. K. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express 23, 1594–1604 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    ADS  Article  Google Scholar 

  38. 38.

    Del’Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).

    ADS  Article  Google Scholar 

  39. 39.

    Xue, X. et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt. Express 24, 687–698 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Papp, S. B., Del’Haye, P. & Diddams, S. A. Mechanical control of a microrod-resonator optical frequency comb. Phys. Rev. X 3, 031003 (2013).

    Google Scholar 

  41. 41.

    Schunk, G. et al. Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source. Optica 2, 773–778 (2015).

    Article  Google Scholar 

  42. 42.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

    ADS  Article  Google Scholar 

  45. 45.

    Kowligy, A. S. et al. Tunable mid-infrared generation via wide-band four wave mixing in silicon nitride waveguides. Opt. Lett. 43, 4220–4223 (2018).

    ADS  Article  Google Scholar 

  46. 46.

    Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    ADS  Article  Google Scholar 

  47. 47.

    Haelterman, M., Trillo, S. & Wabnitz, S. Additive-modulation-instability ring laser in the normal dispersion regime of a fiber. Opt. Lett. 17, 745–747 (1992).

    ADS  Article  Google Scholar 

Download references


This work was supported by the Marsden Fund, Rutherford Discovery Fellowships and James Cook Fellowships of the Royal Society of New Zealand.

Author information




N.L.B.S. performed all the experiments. T.B. and V.N. performed numerical modelling of the resonators and helped perform the delayed self-heterodyne linewidth measurements. L.S.T. and H.G.L.S. fabricated the resonators. M.E. and S.C. contributed to theoretical interpretation of the results. M.E. and S.G.M. wrote the manuscript. All authors contributed to discussing and interpreting the results.

Corresponding author

Correspondence to Stuart G. Murdoch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figs. 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sayson, N.L.B., Bi, T., Ng, V. et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photonics 13, 701–706 (2019). https://doi.org/10.1038/s41566-019-0485-4

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing