The Shockley–Queisser model is a landmark in photovoltaic device analysis by defining an ideal situation as reference for actual solar cells. However, the model and its implications are easily misunderstood. Thus, we present a guide to help understand and to avoid misinterpreting it.
Access options
Subscribe to Journal
Get full journal access for 1 year
$169.00
only $14.08 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.


References
- 1.
Shockley, W. & Queisser, H. J. J. Appl. Phys. 32, 510–519 (1961).
- 2.
Prince, M. B. J. Appl. Phys. 26, 534–540 (1955).
- 3.
Loferski, J. J. J. Appl. Phys. 27, 777–784 (1956).
- 4.
Wolf, M. Proc. IRE 48, 1246–1263 (1960).
- 5.
Nayak, P. K., Mahek, S., Snaith, H. J. & Cahen, D. Nat. Rev. Mater. 4, 269–285 (2019).
- 6.
Krogstrup, P. et al. Nat. Photon. 7, 306–310 (2013).
- 7.
Stolterfoht, M. et al. Energ. Environ. Sci. 10, 1530–1539 (2017).
- 8.
Würfel, P. Physics of Solar Cells: From Basic Principles to Advanced Concepts 2nd edn (Wiley-VCH, 2009).
- 9.
Araujo, G. L. & Marti, A. Sol. Energy Mater. Sol. Cells 33, 213–240 (1994).
- 10.
Hirst, L. C. & Ekins-Daukes, N. J. Prog. Photovolt. Res. Appl. 19, 286–293 (2011).
- 11.
Würfel, U., Cuevas, A. & Würfel, P. IEEE J. Photovolt. 5, 461–469 (2015).
- 12.
Asbeck, P. J. Appl. Phys. 48, 820–822 (1977).
- 13.
Bridgman, P. W. Phys. Rev. 31, 101–102 (1928).
- 14.
Markvart, T. Phys. Status Solidi A 205, 2752–2756 (2008).
- 15.
Green, M. A. Prog. Photovolt. Res. Appl. 9, 123–135 (2001).
- 16.
Green, M. A. Solid State Electron. 24, 788–789 (1981).
- 17.
Tiedje, T., Cebulka, J. M., Morel, D. L. & Abeles, B. Phys. Rev. Lett. 46, 1425–1428 (1981).
- 18.
Nayak, P. K. et al. Energ. Environ. Sci. 5, 6022–6039 (2012).
- 19.
Vandewal, K. et al. Nat. Mater. 13, 63–68 (2014).
- 20.
Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Phys. Rev. Appl. 7, 044016 (2017).
- 21.
Rau, U. Phys. Rev. B 76, 085303 (2007).
- 22.
Xu, Y., Gong, T. & Munday, J. N. Sci. Rep. 5, 13536 (2015).
- 23.
Schweiger, M., Herrmann, W., Gerber, A. & Rau, U. IET Renewable Power Generation 11, 558–565 (2017).
- 24.
Green, M. A. & Ho-Baillie, A. W. Y. ACS Energy Lett. 4, 1639−1644 (2019).
- 25.
Liu, Z. et al. ACS Energy Lett. 4, 110–117 (2019).
- 26.
Green, M. A. Prog. Photovolt. Res. Appl. 26, 3–12 (2018).
- 27.
Polman, A. et al. Science 352, aad4424 (2016).
- 28.
Braly, I. L. et al. Nat. Photon. 12, 355–361 (2018).
- 29.
Marti, A., Balenzategui, J. L. & Reyna, R. F. J. Appl. Phys. 82, 4067–4075 (1997).
Acknowledgements
J.-F.G. thanks the French programme of “investment for the future” (ANR-IEED-002-0). D.C. thanks the Inst. PV d’Ile de France for a visiting professorship and the Ullmann family foundation (via the Weizmann Institute) for support. T.K. and U.R. acknowledge the Helmholtz Asssociation for funding via the PEROSEED project.
Author information
Affiliations
Corresponding authors
Supplementary Information
Supplementary Information
Supporting data for the application of the SQ model to actual photovoltaic technologies.
Rights and permissions
About this article
Cite this article
Guillemoles, JF., Kirchartz, T., Cahen, D. et al. Guide for the perplexed to the Shockley–Queisser model for solar cells. Nat. Photonics 13, 501–505 (2019). https://doi.org/10.1038/s41566-019-0479-2
Published:
Issue Date:
Further reading
-
Light‐Promoted Electrostatic Adsorption of High‐Density Lewis Base Monolayers as Passivating Electron‐Selective Contacts
Advanced Science (2021)
-
Strain-engineered photoelectric conversion properties of lateral monolayer WS2/WSe2 heterojunctions
Journal of Physics D: Applied Physics (2021)
-
Fully Vacuum‐Processed Perovskite Solar Cells on Pyramidal Microtextures
Solar RRL (2021)
-
Efficient perovskite solar cells via improved carrier management
Nature (2021)
-
Study of open circuit voltage loss mechanism in perovskite solar cells
Japanese Journal of Applied Physics (2021)