Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Guide for the perplexed to the Shockley–Queisser model for solar cells

The Shockley–Queisser model is a landmark in photovoltaic device analysis by defining an ideal situation as reference for actual solar cells. However, the model and its implications are easily misunderstood. Thus, we present a guide to help understand and to avoid misinterpreting it.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Explanation of the key concepts used in the SQ model.
Fig. 2: Power losses as a function of bandgap and applied voltage in the SQ model.

References

  1. Shockley, W. & Queisser, H. J. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  Google Scholar 

  2. Prince, M. B. J. Appl. Phys. 26, 534–540 (1955).

    Article  ADS  Google Scholar 

  3. Loferski, J. J. J. Appl. Phys. 27, 777–784 (1956).

    Article  ADS  Google Scholar 

  4. Wolf, M. Proc. IRE 48, 1246–1263 (1960).

    Article  Google Scholar 

  5. Nayak, P. K., Mahek, S., Snaith, H. J. & Cahen, D. Nat. Rev. Mater. 4, 269–285 (2019).

    Article  ADS  Google Scholar 

  6. Krogstrup, P. et al. Nat. Photon. 7, 306–310 (2013).

    Article  ADS  Google Scholar 

  7. Stolterfoht, M. et al. Energ. Environ. Sci. 10, 1530–1539 (2017).

    Article  Google Scholar 

  8. Würfel, P. Physics of Solar Cells: From Basic Principles to Advanced Concepts 2nd edn (Wiley-VCH, 2009).

  9. Araujo, G. L. & Marti, A. Sol. Energy Mater. Sol. Cells 33, 213–240 (1994).

    Article  Google Scholar 

  10. Hirst, L. C. & Ekins-Daukes, N. J. Prog. Photovolt. Res. Appl. 19, 286–293 (2011).

    Article  Google Scholar 

  11. Würfel, U., Cuevas, A. & Würfel, P. IEEE J. Photovolt. 5, 461–469 (2015).

    Article  Google Scholar 

  12. Asbeck, P. J. Appl. Phys. 48, 820–822 (1977).

    Article  ADS  Google Scholar 

  13. Bridgman, P. W. Phys. Rev. 31, 101–102 (1928).

    Article  ADS  Google Scholar 

  14. Markvart, T. Phys. Status Solidi A 205, 2752–2756 (2008).

    Article  ADS  Google Scholar 

  15. Green, M. A. Prog. Photovolt. Res. Appl. 9, 123–135 (2001).

    Article  Google Scholar 

  16. Green, M. A. Solid State Electron. 24, 788–789 (1981).

    Article  ADS  Google Scholar 

  17. Tiedje, T., Cebulka, J. M., Morel, D. L. & Abeles, B. Phys. Rev. Lett. 46, 1425–1428 (1981).

    Article  ADS  Google Scholar 

  18. Nayak, P. K. et al. Energ. Environ. Sci. 5, 6022–6039 (2012).

    Article  Google Scholar 

  19. Vandewal, K. et al. Nat. Mater. 13, 63–68 (2014).

    Article  ADS  Google Scholar 

  20. Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Phys. Rev. Appl. 7, 044016 (2017).

    Article  ADS  Google Scholar 

  21. Rau, U. Phys. Rev. B 76, 085303 (2007).

    Article  ADS  Google Scholar 

  22. Xu, Y., Gong, T. & Munday, J. N. Sci. Rep. 5, 13536 (2015).

    Article  ADS  Google Scholar 

  23. Schweiger, M., Herrmann, W., Gerber, A. & Rau, U. IET Renewable Power Generation 11, 558–565 (2017).

    Article  Google Scholar 

  24. Green, M. A. & Ho-Baillie, A. W. Y. ACS Energy Lett. 4, 1639−1644 (2019).

  25. Liu, Z. et al. ACS Energy Lett. 4, 110–117 (2019).

  26. Green, M. A. Prog. Photovolt. Res. Appl. 26, 3–12 (2018).

    Article  Google Scholar 

  27. Polman, A. et al. Science 352, aad4424 (2016).

    Article  Google Scholar 

  28. Braly, I. L. et al. Nat. Photon. 12, 355–361 (2018).

    Article  ADS  Google Scholar 

  29. Marti, A., Balenzategui, J. L. & Reyna, R. F. J. Appl. Phys. 82, 4067–4075 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.-F.G. thanks the French programme of “investment for the future” (ANR-IEED-002-0). D.C. thanks the Inst. PV d’Ile de France for a visiting professorship and the Ullmann family foundation (via the Weizmann Institute) for support. T.K. and U.R. acknowledge the Helmholtz Asssociation for funding via the PEROSEED project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Francois Guillemoles, Thomas Kirchartz, David Cahen or Uwe Rau.

Supplementary Information

Supplementary Information

Supporting data for the application of the SQ model to actual photovoltaic technologies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillemoles, JF., Kirchartz, T., Cahen, D. et al. Guide for the perplexed to the Shockley–Queisser model for solar cells. Nat. Photonics 13, 501–505 (2019). https://doi.org/10.1038/s41566-019-0479-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0479-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing