Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High external-efficiency nanofocusing for lens-free near-field optical nanoscopy

Abstract

Efficient, broadband illumination and collection through a nanometre-sized hotspot carried by a scanning probe will endow light–matter interaction research with nanoscale spatial information. However, near-field scanning optical microscopy probes, particularly the high-resolution ones, demand cumbersome optics but can only concentrate less than 10−3 of the incident light, which has limited its applications. Here, we report a two-step sequential broadband nanofocusing technique with an external nanofocusing efficiency of ~50% over nearly all the visible range on a fibre-coupled nanowire scanning probe, which is capable of both light delivery and spectrum collection with nanoscale spatial resolution. By integrating this with a basic portable scanning tunnelling microscope, we have demonstrated lens-free tip-enhanced Raman spectroscopy and achieved 1 nm spatial resolution. The high performance and vast versatility offered by this fibre-based nanofocusing technique allow for the easy incorporation of nano-optical microscopy into various existing measurement platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-step sequential nanofocusing concept.
Fig. 2: Experimental demonstration of selective and effective TM0 mode excitation and nanofocusing.
Fig. 3: Lens-free STM-based FIFO-TERS.
Fig. 4: High-resolution FIFO-TERS mapping.
Fig. 5: Mode evolution in the separate-region resonant mode coupling process.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Betzig, E., Trautman, J., Harris, T., Weiner, J. & Kostelak, R. Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251, 1468–1470 (1991).

    Article  ADS  Google Scholar 

  2. Novotny, L. in Progress in Optics Vol. 50 (ed. Wolf, E.) Ch. 5, 137–184 (Elsevier, 2007).

  3. Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nat. Photon. 3, 388–394 (2009).

    Article  Google Scholar 

  4. Rotenberg, N. & Kuipers, L. Mapping nanoscale light fields. Nat. Photon. 8, 919–926 (2014).

    Article  Google Scholar 

  5. Choi, H., Pile, D. F. P., Nam, S., Bartal, G. & Zhang, X. Compressing surface plasmons for nano-scale optical focusing. Opt. Express 17, 7519–7524 (2009).

    Article  ADS  Google Scholar 

  6. Bao, W. et al. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338, 1317–1321 (2012).

    Article  ADS  Google Scholar 

  7. Choo, H. et al. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photon. 6, 837–843 (2012).

    Article  ADS  Google Scholar 

  8. Kravtsov, V., Ulbricht, R., Atkin, J. & Raschke, M. B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 11, 459–464 (2016).

    Article  Google Scholar 

  9. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  Google Scholar 

  10. Keilmann, F. Surface‐polariton propagation for scanning near‐field optical microscopy application. J. Microsc. 194, 567–570 (1999).

    Article  Google Scholar 

  11. Wang, L. & Xu, X. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging. Appl. Phys. Lett. 90, 261105 (2007).

    Article  ADS  Google Scholar 

  12. Burresi, M. et al. Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009).

    Article  ADS  Google Scholar 

  13. Wang, Y., Srituravanich, W., Sun, C. & Zhang, X. Plasmonic nearfield scanning probe with high transmission. Nano Lett. 8, 3041–3045 (2008).

    Article  ADS  Google Scholar 

  14. Srituravanich, W. et al. Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 3, 733–737 (2008).

    Article  Google Scholar 

  15. Zhao, Y. et al. Nanoscopic control and quantification of enantioselective optical forces. Nat. Nanotechnol. 12, 1055–1059 (2017).

    Google Scholar 

  16. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    Google Scholar 

  17. Novotny, L. & Van Hulst, N. Antennas for light. Nat. Photon. 5, 83–90 (2011).

    Article  Google Scholar 

  18. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).

    Article  Google Scholar 

  19. Pile, D. & Gramotnev, D. K. Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89, 041111 (2006).

    Article  ADS  Google Scholar 

  20. Vernon, K. C., Gramotnev, D. K. & Pile, D. F. Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate. J. Appl. Phys. 101, 104312 (2007).

    Article  ADS  Google Scholar 

  21. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  ADS  Google Scholar 

  22. Giugni, A. et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 8, 845–852 (2013).

    Article  Google Scholar 

  23. Berweger, S., Atkin, J. M., Olmon, R. L. & Raschke, M. B. Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. 1, 3427–3432 (2010).

    Article  Google Scholar 

  24. Ropers, C. et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7, 2784–2788 (2007).

    Article  ADS  Google Scholar 

  25. Jiang, R. H. et al. Near-field plasmonic probe with super resolution and high throughput and signal-to-noise ratio. Nano Lett. 18, 881–885 (2018).

    Article  ADS  Google Scholar 

  26. Nerkararyan, K. V. Superfocusing of a surface polariton in a wedge-like structure. Phys. Lett. A 237, 103–105 (1997).

    Article  ADS  Google Scholar 

  27. Tuniz, A. & Schmidt, M. A. Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips. Opt. Express 24, 7507–7524 (2016).

    Article  ADS  Google Scholar 

  28. Schnell, M. et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photon. 5, 283–287 (2011).

    Article  Google Scholar 

  29. Chen, X. W., Sandoghdar, V. & Agio, M. Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett. 9, 3756–3761 (2009).

    Article  ADS  Google Scholar 

  30. Tuniz, A., Chemnitz, M., Dellith, J., Weidlich, S. & Schmidt, M. A. Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber. Nano Lett. 17, 631–637 (2017).

    Article  ADS  Google Scholar 

  31. Gramotnev, D. K., Vogel, M. W. & Stockman, M. I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. 104, 034311 (2008).

    Article  ADS  Google Scholar 

  32. Issa, N. A. & Guckenberger, R. Optical nanofocusing on tapered metallic waveguides. Plasmonics 2, 31–37 (2007).

    Article  Google Scholar 

  33. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

  34. Tugchin, B. N. et al. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photon. 2, 1468–1475 (2015).

    Article  Google Scholar 

  35. Bouhelier, A., Renger, J., Beversluis, M. & Novotny, L. Plasmon‐coupled tip‐enhanced near-field optical microscopy. J. Microsc. 210, 220–224 (2003).

    Article  MathSciNet  Google Scholar 

  36. Janunts, N., Baghdasaryan, K., Nerkararyan, K. V. & Hecht, B. Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Opt. Commun. 253, 118–124 (2005).

    Article  ADS  Google Scholar 

  37. Barthes, J., des Francs, G. C., Bouhelier, A. & Dereux, A. A coupled lossy local-mode theory description of a plasmonic tip. New J. Phys. 14, 083041 (2012).

    Article  ADS  Google Scholar 

  38. Novotny, L. Strong coupling, energy splitting and level crossings: a classical perspective. Am. J. Phys. 78, 1199–1202 (2010).

    Article  ADS  Google Scholar 

  39. Becker, S. F. et al. Gap-plasmon-enhanced nanofocusing near-field microscopy. ACS Photon. 3, 223–232 (2016).

    Article  Google Scholar 

  40. Schmid, T., Opilik, L., Blum, C. & Zenobi, R. Nanoscale chemical imaging using tip‐enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. 52, 5940–5954 (2013).

    Article  Google Scholar 

  41. Sonntag, M. D., Pozzi, E. A., Jiang, N., Hersam, M. C. & Van Duyne, R. P. Recent advances in tip-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 5, 3125–3130 (2014).

    Article  Google Scholar 

  42. Yeo, B. S., Stadler, J., Schmid, T., Zenobi, R. & Zhang, W. Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem. Phys. Lett. 472, 1–13 (2009).

    Article  ADS  Google Scholar 

  43. Yano, Ta et al. Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nat. Commun. 4, 2592 (2013).

    Article  ADS  Google Scholar 

  44. Liao, M. et al. Tip-enhanced Raman spectroscopic imaging of individual carbon nanotubes with subnanometer resolution. Nano Lett. 16, 4040–4046 (2016).

    Article  ADS  Google Scholar 

  45. Piscanec, S., Lazzeri, M., Robertson, J., Ferrari, A. C. & Mauri, F. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions and dynamic effects. Phys. Rev. B 75, 035427 (2007).

    Article  ADS  Google Scholar 

  46. Benz, F. et al. Single-molecule optomechanics in ‘picocavities’. Science 354, 726–729 (2016).

    Article  ADS  Google Scholar 

  47. Chuang, S. L. Physics of Optoelectronic Devices (Wiley, 1995).

  48. Vitanov, N., Fleischhauer, M., Shore, B. & Bergmann, K. Coherent manipulation of atoms and molecules by sequential laser pulses. Adv. Atom. Mol. Opt. Phys. 46, 55–190 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.L. and R.Y. acknowledge start-up support from the Bourns College of Engineering, University of California–Riverside. The probe development and Raman measurements were supported by NSF-CHE-1654794. Theory development and far-field characterization were supported by NSF-DMR-1654746 and NSF-ECCS-1810453.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and R.Y. initiated the project, designed the experiments and supervised the research. S.K. fabricated and characterized the probe, performed the TERS measurements and analysed the data. S.K., N.Y. and Y.Z. synthesized the sharp-tip AgNW. X.M. and Q.L. performed the k-space measurements. M.L. developed the theoretical modelling. All authors contributed to discussion of the results. M.L., R.Y. and S.K. wrote the manuscript.

Corresponding authors

Correspondence to Ming Liu or Ruoxue Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work, Supplementary Figs. 1–18 and Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Yu, N., Ma, X. et al. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics 13, 636–643 (2019). https://doi.org/10.1038/s41566-019-0456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0456-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing