Photonic quadrupole topological phases

Article metrics

Abstract

The topological phases of matter are characterized using the Berry phase, a geometrical phase associated with the energy-momentum band structure. The quantization of the Berry phase and the associated wavefunction polarization manifest as remarkably robust physical observables, such as quantized Hall conductivity and disorder-insensitive photonic transport1,2,3,4,5. Recently, a novel class of topological phases, called higher-order topological phases, were proposed by generalizing the fundamental relationship between the Berry phase and quantized polarization, from dipole to multipole moments6,7,8. Here, we demonstrate photonic realization of the quantized quadrupole topological phase, using silicon photonics. In our two-dimensional second-order topological phase, we show that the quantization of the bulk quadrupole moment manifests as topologically robust zero-dimensional corner states. We contrast these topological states against topologically trivial corner states in a system without bulk quadrupole moment, where we observe no robustness. Our photonic platform could enable the development of robust on-chip classical and quantum optical devices with higher-order topological protection.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of the photonic quadrupole topological system.
Fig. 2: Observation of corner states.
Fig. 3: Corner states at the quadrupole domain boundary.
Fig. 4: Corner states in a lattice with zero gauge flux.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

  2. 2.

    Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989).

  3. 3.

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

  4. 4.

    King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

  5. 5.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

  6. 6.

    Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

  7. 7.

    Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).

  8. 8.

    Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).

  9. 9.

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

  10. 10.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  11. 11.

    Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

  12. 12.

    Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

  13. 13.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

  14. 14.

    Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

  15. 15.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

  16. 16.

    Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).

  17. 17.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

  18. 18.

    Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

  19. 19.

    Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018).

  20. 20.

    Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018).

  21. 21.

    Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).

  22. 22.

    Xue, H., Yang, Y., Gao, F., Chong, Y. & Zhang, B. Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater. 18, 108–112 (2019).

  23. 23.

    Ni, X., Weiner, M., Alù, A. & Khanikaev, A. B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113–120 (2019).

  24. 24.

    Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. Photon. 12, 408–415 (2018).

  25. 25.

    Li, F.-F. et al. Topological light-trapping on a dislocation. Nat. Commun. 9, 2462 (2018).

  26. 26.

    Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

  27. 27.

    Mittal, S., Ganeshan, S., Fan, J., Vaezi, A. & Hafezi, M. Measurement of topological invariants in a 2D photonic system. Nat. Photon. 10, 180–183 (2016).

  28. 28.

    Liu, T. et al. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett. 122, 076801 (2019).

  29. 29.

    Jing, H., Özdemir, S. K., Lü, H. & Nori, F. High-order exceptional points in optomechanics. Sci. Rep. 7, 3386 (2017).

  30. 30.

    Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

  31. 31.

    Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum fluctuations and traveling wave amplifiers. Phys. Rev. X 6, 041026 (2016).

  32. 32.

    Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

Download references

Acknowledgements

This research was supported by AFOSR-MURI FA9550-14-1-0267, the Sloan Foundation and the Physics Frontier Center at the Joint Quantum Institute. A.P. and M.A.G. have been supported by the Russian Foundation for Basic Research grant no. 18-29-20037 and the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS. A.P. also acknowledges partial support by the Australian Research Council. The authors thank H. Dehghani, Y. Kivshar and D. Leykam for discussions and E. Yamaguchi and J. Vannucci for experimental help.

Author information

S.M. designed the chips and the experiment. S.M. and V.V.O. performed the experiments. A.P., G.Z. and M.A.G. performed the theoretical analysis. M.H. supervised the project. All authors contributed to analysing the data and writing the manuscript.

Correspondence to Sunil Mittal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary derivations, discussion and experimental data. Supplementary Figs. 1–10 and Supplementary references 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading