Article | Published:

Knotting fractional-order knots with the polarization state of light

Abstract

The fundamental polarization singularities of monochromatic light are normally associated with invariance under coordinated rotations: symmetry operations that rotate the spatial dependence of an electromagnetic field by an angle θ and its polarization by a multiple γθ of that angle. These symmetries are generated by mixed angular momenta of the form Jγ = L + γS, and they generally induce Möbius-strip topologies, with the coordination parameter γ restricted to integer and half-integer values. In this work we construct beams of light that are invariant under coordinated rotations for arbitrary rational γ, by exploiting the higher internal symmetry of ‘bicircular’ superpositions of counter-rotating circularly polarized beams at different frequencies. We show that these beams have the topology of a torus knot, which reflects the subgroup generated by the torus-knot angular momentum Jγ, and we characterize the resulting optical polarization singularity using third- and higher-order field moment tensors, which we experimentally observe using nonlinear polarization tomography.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data used to generate the experimental figures in this paper have been publicly archived in the Zenodo repository at https://doi.org/10.5281/zenodo.2649391.

Code availability

The code used to generate the theoretical figures, and the scripts used to process the experimental data, have been publicly archived in the Zenodo repository at https://doi.org/10.5281/zenodo.2649391.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Torres, J. P. & Torner, L. (eds) Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley, 2011).

  2. 2.

    Andrews, D. L. & Babiker, M. (eds) The Angular Momentum of Light (Cambridge University Press, 2012).

  3. 3.

    Gbur, G. Singular Optics (CRC Press, 2016).

  4. 4.

    Rubinsztein-Dunlop, H. et al. Roadmap on structured light. J. Opt. 19, 013001 (2017).

  5. 5.

    Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. A 336, 165–190 (1974).

  6. 6.

    Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–491 (2012).

  7. 7.

    Fürhapter, S., Jesacher, A., Bernet, S. & Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 13, 689–694 (2005).

  8. 8.

    Garcés-Chávez, V., Volke-Sepulveda, K., Chávez-Cerda, S., Sibbett, W. & Dholakia, K. Transfer of orbital angular momentum to an optically trapped low-index particle. Phys. Rev. A 66, 063402 (2002).

  9. 9.

    Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon 5, 343–348 (2011).

  10. 10.

    Hernández-García, C. et al. Generation and applications of extreme-ultraviolet vortices. Photonics 4, 28 (2017).

  11. 11.

    Barnett, S. M. et al. On the natures of the spin and orbital parts of optical angular momentum. J. Opt. 18, 064004 (2016).

  12. 12.

    Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nat. Phys. 3, 305–310 (2007).

  13. 13.

    Van Enk, S. & Nienhuis, G. Spin and orbital angular momentum of photons. Eur. Phys. Lett. 25, 497–501 (1994).

  14. 14.

    Kedia, H., Bialynicki-Birula, I., Peralta-Salas, D. & Irvine, W. T. M. Tying knots in light fields. Phys. Rev. Lett. 111, 150404 (2013).

  15. 15.

    Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Laser beams: knotted threads of darkness. Nature 432, 165 (2004).

  16. 16.

    Dennis, M. R., King, R. P., Jack, B., O’Holleran, K. & Padgett, M. J. Isolated optical vortex knots. Nat. Phys. 6, 118–121 (2010).

  17. 17.

    Sugic, D. & Dennis, M. R. Knotted hopfion in tightly focused light. In Proceedings of the 4th International Conference on Optical Angular Momentum (ed. Marrucci, L.) 137 (Jean Gilder, 2017); http://www.jeangilder.it/icoam2017/abstract-book/

  18. 18.

    Larocque, H. et al. Reconstructing the topology of optical polarization knots. Nat. Phys. 14, 1079–1082 (2018).

  19. 19.

    Freund, I. Cones, spirals and Möbius strips, in elliptically polarized light. Opt. Commun. 249, 7–22 (2005).

  20. 20.

    Nye, J. F. & Hajnal, J. V. The wave structure of monochromatic electromagnetic radiation. Proc. R. Soc. Lond. A 409, 21–36 (1987).

  21. 21.

    Dennis, M. R. Polarization singularities in paraxial vector fields: morphology and statistics. Opt. Commun. 213, 201–221 (2002).

  22. 22.

    Bauer, T. et al. Multi-twist polarization ribbon topologies in highly-confined optical fields. Preprint at http://arxiv.org/abs/1901.11337 (2019).

  23. 23.

    Freund, I. Optical Möbius strips in three-dimensional ellipse fields: I. Lines of circular polarization. Opt. Commun. 283, 1–15 (2010).

  24. 24.

    Freund, I. Optical Möbius strips in three-dimensional ellipse fields: II. Lines of circular polarization. Opt. Commun. 283, 16–28 (2010).

  25. 25.

    Bauer, T. et al. Observation of optical polarization Möbius strips. Science 347, 964–966 (2015).

  26. 26.

    Bauer, T., Neugebauer, M., Leuchs, G. & Banzer, P. Optical polarization Möbius strips and points of purely transverse spin density. Phys. Rev. Lett. 117, 013601 (2016).

  27. 27.

    Galvez, E. J. et al. Multitwist Möbius strips and twisted ribbons in the polarization of paraxial light beams. Sci. Rep. 7, 13653 (2017).

  28. 28.

    Garcia-Etxarri, A. Optical polarization Möbius strips on all-dielectric optical scatterers. ACS Photonics 4, 1159–1164 (2017).

  29. 29.

    Cardano, F. & Marrucci, L. Spin–orbit photonics. Nat. Photon 9, 776–778 (2015).

  30. 30.

    Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

  31. 31.

    Bliokh, K. Y. Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A Pure Appl. Opt. 11, 094009 (2009).

  32. 32.

    Ballantine, K. E., Donegan, J. F. & Eastham, P. R. There are many ways to spin a photon: half-quantization of a total optical angular momentum. Sci. Adv. 2, e1501748 (2016).

  33. 33.

    Leach, J. et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett. 92, 013601 (2004).

  34. 34.

    Galvez, E. J., Coyle, L. E., Johnson, E. & Reschovsky, B. J. Interferometric measurement of the helical mode of a single photon. New J. Phys. 13, 053017 (2011).

  35. 35.

    Kessler, D. A. & Freund, I. Lissajous singularities. Opt. Lett. 28, 111–113 (2003).

  36. 36.

    Freund, I. Bichromatic optical Lissajous fields. Opt. Commun. 226, 351–376 (2003).

  37. 37.

    Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photon. 8, 543–549 (2014).

  38. 38.

    Freund, I. Polychromatic polarization singularities. Opt. Lett. 28, 2150–2152 (2003).

  39. 39.

    Freund, I. Polarization critical points in polychromatic optical fields. Opt. Commun. 227, 61–71 (2003).

  40. 40.

    Yan, H. & Lü, B. Dynamical evolution of Lissajous singularities in free-space propagation. Phys. Lett. A 374, 3695–3700 (2010).

  41. 41.

    Haitao, C., Gao, Z. & Wang, W. Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams. Opt. Commun. 393, 17–24 (2017).

  42. 42.

    Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots (American Mathematical Society, 2004).

  43. 43.

    Rolfsen, D. Knots and Links 17–18 (American Mathematical Society, 2003).

  44. 44.

    Götte, J. B. et al. Light beams with fractional orbital angular momentum and their vortex structure. Opt. Express 16, 993–1006 (2008).

  45. 45.

    Freund, I. Coherency matrix description of optical polarization singularities. J. Opt. A Pure Appl. Opt. 6, S229 (2004).

  46. 46.

    Samim, M., Krouglov, S. & Barzda, V. Nonlinear Stokes–Mueller polarimetry. Phys. Rev. A 93, 013847 (2016).

  47. 47.

    Maucher, F., Skupin, S., Gardiner, S. A. & Hughes, I. G. Creating complex optical longitudinal polarization structures. Phys. Rev. Lett. 120, 163903 (2018).

  48. 48.

    Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

  49. 49.

    Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

  50. 50.

    Lin, Y.-J., Jiménez-García, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

  51. 51.

    Maucher, F., Gardiner, S. A. & Hughes, I. G. Excitation of knotted vortex lines in matter waves. New J. Phys. 18, 063016 (2016).

  52. 52.

    Bloembergen, N. Conservation laws in nonlinear optics. J. Opt. Soc. Am. 70, 1429–1436 (1980).

  53. 53.

    Hickstein, D. D. et al. Non-collinear generation of angularly isolated circularly polarized high harmonics. Nat. Photon. 9, 743–750 (2015).

  54. 54.

    Pisanty, E. et al. Conservation of torus-knot angular momentum in high-order harmonic generation. Phys. Rev. Lett. 122, 203201 (2019).

  55. 55.

    Pisanty, E. LISSAFIRE: Lissajous-figure reconstruction for nonlinear polarization tomography of bichromatic fields https://github.com/episanty/LISSAFIRE (GitHub); v1.0.2 https://doi.org/10.5281/zenodo.2649390 (Zenodo, 2019).

  56. 56.

    Pisanty, E. et al. Code and data for ‘Knotting fractional-order knots with the polarization state of light’ https://doi.org/10.5281/zenodo.2649391 (Zenodo, 2019).

Download references

Acknowledgements

The authors thank M. Maffei and I. Freund for helpful conversations, and X. Menino for 3D-printing assistance. E.P. acknowledges Cellex-ICFO-MPQ fellowship funding. E.P., M.L. and A.C. acknowledge funding from the Spanish Ministry MINECO (National Plan 15 Grant: FISICATEAMO no. FIS2016-79508-P, SEVERO OCHOA no. SEV-2015-0522, FPI), the European Social Fund, Fundació Cellex, Generalitat de Catalunya (AGAUR grant no. 2017 SGR 1341 and CERCA/Program), ERC AdG OSYRIS, EU FETPRO QUIC and the National Science Centre, Poland-Symfonia grant no. 2016/20/W/ST4/00314. V.V.-H. acknowledges financial support from Secretaría de Ciencia, Tecnología e Innovación de la Ciudad de México. J.P.T. acknowledges support from Generalitat de Catalunya (Program ICREA Academia). G.J.M. was supported by the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya, as well as the European Social Fund—FEDER. A.P. acknowledges funding from Comunidad de Madrid through TALENTO grant ref. 2017-T1/IND-5432. A.C. acknowledges financial support from the ERC Synergy Grant UQUAM, the SFB FoQuS (FWF project no. F4016-N23), the UAB Talent Research programme and from the Spanish Ministry of Economy and Competitiveness under contract no. FIS2017-86530-P.

Author information

E.P. conceived the project and developed the theory. G.J.M., V.V.-H., E.P. and J.P.T. designed the experiment. G.J.M. and V.V.-H. conducted the experiment. A.P., A.C. and M.L. assisted with the theory. E.P. wrote the manuscript, with assistance from V.V.-H. for the Methods section. J.P.T. supervised the experimental work and M.L. oversaw the theory development. All authors contributed to the scientific discussion.

Competing interests

The authors declare no competing interests.

Correspondence to Emilio Pisanty.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figs. 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Coordinated-rotation invariance and torus-knot beam topology.
Fig. 2: Possible topologies of torus-knot beams.
Fig. 3: Experimental configuration and results.