Comment | Published:

So much more than paper

As the most abundant biopolymer on Earth since it can be found in every plant cell wall, cellulose has emerged as an ideal candidate for the development of renewable and biodegradable photonic materials, substituting conventional pigments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Revol, J.-F., Godbout, D. L. & Gray, D. G. J. Pulp Pap. Sci. 24, 146–149 (1998).

  2. 2.

    Dumanli, A. G. et al. Adv. Opt. Mater. 2, 646–650 (2014).

  3. 3.

    Lagerwall, J. P. F. et al. NPG Asia Mater. 6, e80 (2014).

  4. 4.

    Wilts, B. D., Whitney, H. M., Glover, B. J., Steiner, U. & Vignolini, S. Mater. Today Proc. 1, 177–185 (2014).

  5. 5.

    Steiner, L. M. et al. J. R. Soc. Interface Focus 9, 20180055 (2018).

  6. 6.

    Vignolini, S. et al. Proc. Natl Acad. Sci. USA 109, 15712–15715 (2012).

  7. 7.

    Vignolini, S. et al. J. R. Soc. Interface 13, 20160645 (2016).

  8. 8.

    Vignolini, S., Moyroud, E., Glover, B. J. & Steiner, U. J. R. Soc. Interface 10, 20130394 (2013).

  9. 9.

    Hermans, P. H. Contribution to the Physics of Cellulose Fibres: A Study of Sorption, Density, Refractive Power and Orientation (Elsevier Publishing Company, Inc., 1946).

  10. 10.

    Greenwood, C. T. & Hourston, D. J. Polymer (Guildf). 16, 474 (1975).

  11. 11.

    Parthasarathi, R. et al. J. Phys. Chem. A 115, 14191–14202 (2011).

  12. 12.

    Foster, E. J. et al. Chem. Soc. Rev. 47, 2609–2679 (2018).

  13. 13.

    Elazzouzi-Hafraoui, S. et al. Biomacromolecules 9, 57–65 (2008).

  14. 14.

    Reid, M. S., Villalobos, M. & Cranston, E. D. Langmuir 33, 1583–1598 (2017).

  15. 15.

    Lasseuguette, E., Roux, D. & Nishiyama, Y. Cellulose 15, 425–433 (2008).

  16. 16.

    Frka-Petesic, B., Sugiyama, J., Kimura, S., Chanzy, H. & Maret, G. Macromolecules 48, 8844–8857 (2015).

  17. 17.

    Onogi, Y. & Nishijima, Y. Kobunshi Ronbunshu 43, 223–229 (1986).

  18. 18.

    Kamita, G. et al. Adv. Opt. Mater. 4, 1950–1954 (2016).

  19. 19.

    Revol, J.-F. F., Bradford, H., Giasson, J., Marchessault, R. H. H. & Gray, D. G. G. Int. J. Biol. Macromol. 14, 170–172 (1992).

  20. 20.

    Frka-Petesic, B., Guidetti, G., Kamita, G. & Vignolini, S. Adv. Mater. 29, 1701469 (2017).

  21. 21.

    Frka-Petesic, B., Kamita, G., Guidetti, G. & Vignolini, S. Phys. Rev. Mater. 3, 045601 (2019).

  22. 22.

    Revol, J.-F. et al. Liq. Cryst. 16, 127–134 (1994).

  23. 23.

    Wang, P.-X., Hamad, W. Y. & MacLachlan, M. J. Nat. Commun. 7, 11515 (2016).

  24. 24.

    Parker, R. M. et al. Adv. Mater. 30, 1704477 (2018).

  25. 25.

    Conley, K., Godbout, L., Whitehead, M. A. & Van De Ven, T. G. M. Carbohydr. Polym. 135, 285–299 (2016).

  26. 26.

    Godinho, M. H., Gray, D. G. & Pieranski, P. Liq. Cryst. 44, 2108–2120 (2017).

  27. 27.

    Werbowyj, R. S. & Gray, D. G. Macromolecules 13, 69–73 (1980).

  28. 28.

    Asada, T., Toda, K. & Onogi, S. Mol. Cryst. Liq. Cryst. 68, 231–246 (1981).

  29. 29.

    Ferreira, A. J., Almeida, P. L., Costa, I., Brogueira, P. & Godinho, M. H. Liq. Cryst. 34, 1269–1273 (2007).

  30. 30.

    Liang, H.-L. et al. Nat. Commun. 9, 4632 (2018).

  31. 31.

    Ganner, T. et al. Sci. Rep. 6, 32451 (2016).

  32. 32.

    Beck, S., Méthot, M. & Bouchard, J. Cellulose 22, 101–116 (2015).

  33. 33.

    Onsager, L. Ann. NY Acad. Sci. 51, 627–659 (1949).

  34. 34.

    Dong, X. M., Kimura, T., Revol, J.-F. & Gray, D. G. Langmuir 12, 2076–2082 (1996).

  35. 35.

    Honorato-Rios, C. et al. NPG Asia Mater. 10, 455–465 (2018).

  36. 36.

    Fernandes, S. N. et al. Adv. Mater. 29, 1603560 (2017).

  37. 37.

    Parker, R. M. et al. ACS Nano 10, 8443–8449 (2016).

  38. 38.

    Zhao, T. H. et al. Adv. Funct. Mater. 1804531 (2018).

  39. 39.

    Shopsowitz, K. E., Qi, H., Hamad, W. Y. & MacLachlan, M. J. Nature 468, 422–425 (2010).

  40. 40.

    Caixeiro, S., Peruzzo, M., Onelli, O. D., Vignolini, S. & Sapienza, R. ACS Appl. Mater. Interfaces 9, 7885–7890 (2017).

  41. 41.

    Henriksson, M., Berglund, L. A., Isaksson, P., Lindström, T. & Nishino, T. Biomacromolecules 9, 1579–1585 (2008).

  42. 42.

    Huang, W. in Nanopapers: From Nanochemistry and Nanomanufacturing to Advanced Applications 121–173 (William Andrew Publishing, 2017).

  43. 43.

    Toivonen, M. S. et al. Adv. Mater. 30, 1704050 (2018).

  44. 44.

    Futamura NatureFlex TM – Compostable and Renewable Packaging Films; https://go.nature.com/2PWbNio

  45. 45.

    Kumar, V., Elfving, A., Koivula, H., Bousfield, D. & Toivakka, M. Ind. Eng. Chem. Res. 55, 3603–3613 (2016).

  46. 46.

    Koppolu, R. et al. Cellulose 25, 6055–6069 (2018).

  47. 47.

    Bettini, S. et al. Sci. Rep. 7, 40373 (2017).

  48. 48.

    Browne, M. A. et al. Environ. Sci. Technol. 45, 9175–9179 (2011).

  49. 49.

    Law, K. L. & Thompson, R. C. Science 345, 144–145 (2014).

  50. 50.

    Guidetti, G., Atifi, S., Vignolini, S. & Hamad, W. Y. Adv. Mater. 28, 10042–10047 (2016).

Download references

Acknowledgements

We would like to acknowledge invaluable discussions with group members as well as funding from the BBSRC David Phillips Fellowship (BB/K014617/1) and the European Research Council (ERC-2014-STG H2020 639088 and ERC-PoC-2017_790518 PixCell).

Author information

Correspondence to Silvia Vignolini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Cellulose photonic structure for controlling appearance.
Fig. 2: Artistic view of the hierarchical structuration of cellulose-based tissues in plants.
Fig. 3: Cellulose-based photonic structures.