Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

So much more than paper

As the most abundant biopolymer on Earth since it can be found in every plant cell wall, cellulose has emerged as an ideal candidate for the development of renewable and biodegradable photonic materials, substituting conventional pigments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellulose photonic structure for controlling appearance.
Fig. 2: Artistic view of the hierarchical structuration of cellulose-based tissues in plants.
Fig. 3: Cellulose-based photonic structures.

References

  1. Revol, J.-F., Godbout, D. L. & Gray, D. G. J. Pulp Pap. Sci. 24, 146–149 (1998).

    Google Scholar 

  2. Dumanli, A. G. et al. Adv. Opt. Mater. 2, 646–650 (2014).

    Article  Google Scholar 

  3. Lagerwall, J. P. F. et al. NPG Asia Mater. 6, e80 (2014).

    Article  Google Scholar 

  4. Wilts, B. D., Whitney, H. M., Glover, B. J., Steiner, U. & Vignolini, S. Mater. Today Proc. 1, 177–185 (2014).

    Article  Google Scholar 

  5. Steiner, L. M. et al. J. R. Soc. Interface Focus 9, 20180055 (2018).

    Article  Google Scholar 

  6. Vignolini, S. et al. Proc. Natl Acad. Sci. USA 109, 15712–15715 (2012).

    Article  ADS  Google Scholar 

  7. Vignolini, S. et al. J. R. Soc. Interface 13, 20160645 (2016).

    Article  Google Scholar 

  8. Vignolini, S., Moyroud, E., Glover, B. J. & Steiner, U. J. R. Soc. Interface 10, 20130394 (2013).

    Article  Google Scholar 

  9. Hermans, P. H. Contribution to the Physics of Cellulose Fibres: A Study of Sorption, Density, Refractive Power and Orientation (Elsevier Publishing Company, Inc., 1946).

  10. Greenwood, C. T. & Hourston, D. J. Polymer (Guildf). 16, 474 (1975).

    Article  Google Scholar 

  11. Parthasarathi, R. et al. J. Phys. Chem. A 115, 14191–14202 (2011).

    Article  Google Scholar 

  12. Foster, E. J. et al. Chem. Soc. Rev. 47, 2609–2679 (2018).

    Article  Google Scholar 

  13. Elazzouzi-Hafraoui, S. et al. Biomacromolecules 9, 57–65 (2008).

    Article  Google Scholar 

  14. Reid, M. S., Villalobos, M. & Cranston, E. D. Langmuir 33, 1583–1598 (2017).

    Article  Google Scholar 

  15. Lasseuguette, E., Roux, D. & Nishiyama, Y. Cellulose 15, 425–433 (2008).

    Article  Google Scholar 

  16. Frka-Petesic, B., Sugiyama, J., Kimura, S., Chanzy, H. & Maret, G. Macromolecules 48, 8844–8857 (2015).

    Article  ADS  Google Scholar 

  17. Onogi, Y. & Nishijima, Y. Kobunshi Ronbunshu 43, 223–229 (1986).

    Article  Google Scholar 

  18. Kamita, G. et al. Adv. Opt. Mater. 4, 1950–1954 (2016).

    Article  Google Scholar 

  19. Revol, J.-F. F., Bradford, H., Giasson, J., Marchessault, R. H. H. & Gray, D. G. G. Int. J. Biol. Macromol. 14, 170–172 (1992).

    Article  Google Scholar 

  20. Frka-Petesic, B., Guidetti, G., Kamita, G. & Vignolini, S. Adv. Mater. 29, 1701469 (2017).

    Article  Google Scholar 

  21. Frka-Petesic, B., Kamita, G., Guidetti, G. & Vignolini, S. Phys. Rev. Mater. 3, 045601 (2019).

    Article  Google Scholar 

  22. Revol, J.-F. et al. Liq. Cryst. 16, 127–134 (1994).

    Article  Google Scholar 

  23. Wang, P.-X., Hamad, W. Y. & MacLachlan, M. J. Nat. Commun. 7, 11515 (2016).

    Article  ADS  Google Scholar 

  24. Parker, R. M. et al. Adv. Mater. 30, 1704477 (2018).

    Article  Google Scholar 

  25. Conley, K., Godbout, L., Whitehead, M. A. & Van De Ven, T. G. M. Carbohydr. Polym. 135, 285–299 (2016).

    Article  Google Scholar 

  26. Godinho, M. H., Gray, D. G. & Pieranski, P. Liq. Cryst. 44, 2108–2120 (2017).

    Google Scholar 

  27. Werbowyj, R. S. & Gray, D. G. Macromolecules 13, 69–73 (1980).

    Article  ADS  Google Scholar 

  28. Asada, T., Toda, K. & Onogi, S. Mol. Cryst. Liq. Cryst. 68, 231–246 (1981).

    Article  Google Scholar 

  29. Ferreira, A. J., Almeida, P. L., Costa, I., Brogueira, P. & Godinho, M. H. Liq. Cryst. 34, 1269–1273 (2007).

    Article  Google Scholar 

  30. Liang, H.-L. et al. Nat. Commun. 9, 4632 (2018).

    Article  ADS  Google Scholar 

  31. Ganner, T. et al. Sci. Rep. 6, 32451 (2016).

    Article  ADS  Google Scholar 

  32. Beck, S., Méthot, M. & Bouchard, J. Cellulose 22, 101–116 (2015).

    Article  Google Scholar 

  33. Onsager, L. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  ADS  Google Scholar 

  34. Dong, X. M., Kimura, T., Revol, J.-F. & Gray, D. G. Langmuir 12, 2076–2082 (1996).

    Article  Google Scholar 

  35. Honorato-Rios, C. et al. NPG Asia Mater. 10, 455–465 (2018).

    Article  ADS  Google Scholar 

  36. Fernandes, S. N. et al. Adv. Mater. 29, 1603560 (2017).

    Article  Google Scholar 

  37. Parker, R. M. et al. ACS Nano 10, 8443–8449 (2016).

    Article  Google Scholar 

  38. Zhao, T. H. et al. Adv. Funct. Mater. 1804531 (2018).

  39. Shopsowitz, K. E., Qi, H., Hamad, W. Y. & MacLachlan, M. J. Nature 468, 422–425 (2010).

    Article  ADS  Google Scholar 

  40. Caixeiro, S., Peruzzo, M., Onelli, O. D., Vignolini, S. & Sapienza, R. ACS Appl. Mater. Interfaces 9, 7885–7890 (2017).

    Article  Google Scholar 

  41. Henriksson, M., Berglund, L. A., Isaksson, P., Lindström, T. & Nishino, T. Biomacromolecules 9, 1579–1585 (2008).

    Article  Google Scholar 

  42. Huang, W. in Nanopapers: From Nanochemistry and Nanomanufacturing to Advanced Applications 121–173 (William Andrew Publishing, 2017).

  43. Toivonen, M. S. et al. Adv. Mater. 30, 1704050 (2018).

    Article  Google Scholar 

  44. Futamura NatureFlex TM – Compostable and Renewable Packaging Films; https://go.nature.com/2PWbNio

  45. Kumar, V., Elfving, A., Koivula, H., Bousfield, D. & Toivakka, M. Ind. Eng. Chem. Res. 55, 3603–3613 (2016).

    Article  Google Scholar 

  46. Koppolu, R. et al. Cellulose 25, 6055–6069 (2018).

    Article  Google Scholar 

  47. Bettini, S. et al. Sci. Rep. 7, 40373 (2017).

    Article  ADS  Google Scholar 

  48. Browne, M. A. et al. Environ. Sci. Technol. 45, 9175–9179 (2011).

    Article  ADS  Google Scholar 

  49. Law, K. L. & Thompson, R. C. Science 345, 144–145 (2014).

    Article  ADS  Google Scholar 

  50. Guidetti, G., Atifi, S., Vignolini, S. & Hamad, W. Y. Adv. Mater. 28, 10042–10047 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge invaluable discussions with group members as well as funding from the BBSRC David Phillips Fellowship (BB/K014617/1) and the European Research Council (ERC-2014-STG H2020 639088 and ERC-PoC-2017_790518 PixCell).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Vignolini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frka-Petesic, B., Vignolini, S. So much more than paper. Nat. Photonics 13, 365–367 (2019). https://doi.org/10.1038/s41566-019-0448-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0448-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing