Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Super-efficient temporal solitons in mutually coupled optical cavities

Abstract

A coherently driven Kerr optical cavity is able to sustain dissipative temporal solitons, enabling all-optical data storage buffers and broadband frequency combs. Kerr solitons are balanced through an energy exchange with the pump field. Improving the pump-to-soliton energy conversion is of great importance for practical applications, but remains an outstanding challenge owing to a limited pump–soliton temporal overlap. Here we report the discovery of temporal solitons in mutually coupled cavities instead of a traditional single cavity. A pump recycling strategy is proposed, to greatly improve the power utilization efficiency. Using macroscale optical fibre-ring cavities, which share the same physical model as miniature microresonators, we demonstrate nearly 100% pump recycling and the ability to break the efficiency limit of a single cavity. This study could greatly extend the applications of temporal cavity solitons and provides an attractive platform for exploring the complex nonlinear dynamics in coupled cavity systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of soliton generation with pump recycling.
Fig. 2: Dual-coupled optical fibre-ring cavities for studying soliton dynamics.
Fig. 3: Observation of coupled-cavity solitons.
Fig. 4: Soliton characterization in the time domain.
Fig. 5: Soliton existence range.
Fig. 6: Numerically simulated soliton frequency comb generation in mutually coupled optical microresonators assuming no intrinsic losses.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Boardman, A. D. & Sukhorukov, A. P. Soliton-driven Photonics (Springer, 2001).

  2. Liehr, A. W. Dissipative Solitons in Reaction Diffusion Systems (Springer, 2013).

  3. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  4. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  5. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  6. Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    Article  ADS  Google Scholar 

  7. Wang, Y. et al. Universal mechanism for the binding of temporal cavity solitons. Optica 4, 855–863 (2017).

    Article  Google Scholar 

  8. Anderson, M. et al. Coexistence of multiple nonlinear states in a tristable passive Kerr resonator. Phys. Rev. X 7, 031031 (2017).

    Google Scholar 

  9. Weiner, A. M. Frequency combs: cavity solitons come of age. Nat. Photon. 11, 533–535 (2017).

    Article  Google Scholar 

  10. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  11. Saha, K. et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21, 1335–1343 (2013).

    Article  ADS  Google Scholar 

  12. Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  13. Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).

    Article  Google Scholar 

  14. Yang, Q. F., Yi, X., Yang, K. Y. & Vahala, K. J. Stokes solitons in optical microcavities. Nat. Phys. 13, 53–57 (2017).

    Article  Google Scholar 

  15. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  16. Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–606 (2017).

    Article  Google Scholar 

  17. Jang, J. K. et al. Synchronization of coupled optical microresonators. Nat. Photon. 12, 688–693 (2018).

    Article  ADS  Google Scholar 

  18. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  ADS  Google Scholar 

  19. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  20. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  21. Huang, S.-W. et al. Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip. Phys. Rev. X 7, 041002 (2017).

    Google Scholar 

  22. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  ADS  Google Scholar 

  23. Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    Article  ADS  Google Scholar 

  24. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  25. Xue, X., Zheng, X., Zhou, B. & Weiner, A. M. Microresonator frequency combs for integrated microwave photonics. Photon. Technol. Lett. 30, 1814–1817 (2018).

    Article  ADS  Google Scholar 

  26. Wu, J. et al. RF photonics: an optical micro-combs’ perspective. J. Sel. Top. Quantum Electron. 24, 6101020 (2018).

    Google Scholar 

  27. Bao, C. et al. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett. 39, 6126–6129 (2014).

    Article  ADS  Google Scholar 

  28. Xue, X., Wang, P.-H., Xuan, Y., Qi, M. & Weiner, A. M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev. 11, 1600276 (2017).

    Article  ADS  Google Scholar 

  29. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  30. The LIGO Scientific Collaboration and Virgo Collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  31. Mason, S. J. Feedback theory—further properties of signal flow graphs. Proc. IRE 44, 920–926 (1956).

    Article  Google Scholar 

  32. Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

    Article  ADS  Google Scholar 

  33. Grudinin, I. S. et al. High-contrast Kerr frequency combs. Optica 4, 434–437 (2017).

    Article  Google Scholar 

  34. Haus, H. A. et al. in Optical Microcavities (ed. Vahala, K.) Ch.1 (World Scientific Publishing, 2004).

  35. Coen, S. & Haelterman, M. Impedance-matched modulational instability laser for background-free pulse train generation in the THz range. Opt. Commun. 146, 339–346 (1998).

    Article  ADS  Google Scholar 

  36. Kelly, S. M. J. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett. 28, 806–807 (1992).

    Article  Google Scholar 

  37. Matsko, A. B. et al. Optical Cherenkov radiation in overmoded microresonators. Opt. Lett. 41, 2907–2910 (2016).

    Article  ADS  Google Scholar 

  38. Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).

    Article  ADS  Google Scholar 

  39. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    Article  ADS  Google Scholar 

  40. Xue, X. et al. Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl. 6, e16253 (2017).

    Article  Google Scholar 

  41. Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 14869 (2017).

    Article  ADS  Google Scholar 

  42. Xue, X. et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt. Express 24, 687–698 (2016).

    Article  ADS  Google Scholar 

  43. Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    Article  ADS  Google Scholar 

  44. Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica 3, 854–860 (2016).

    Article  Google Scholar 

  45. Jung, H., Fong, K. Y., Xiong, C. & Tang, H. X. Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators. Opt. Lett. 39, 84–87 (2014).

    Article  ADS  Google Scholar 

  46. Zhang, M. et al. Electronically programmable photonic molecule. Nat. Photon. 13, 36–40 (2019).

    Article  ADS  Google Scholar 

  47. Xue, X. et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev. 9, L23–L28 (2015).

    Article  Google Scholar 

  48. Miller, S. A. et al. Tunable frequency combs based on dual microring resonators. Opt. Express 23, 21527–21540 (2015).

    Article  ADS  Google Scholar 

  49. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  50. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).

    Article  ADS  Google Scholar 

  51. Wang, Y. et al. Addressing temporal Kerr cavity solitons with a single pulse of intensity modulation. Opt. Lett. 43, 3192–3195 (2018).

    Article  ADS  Google Scholar 

  52. Agrawal, G. P. Nonlinear Fibre Optics (Academic Press, 2001).

Download references

Acknowledgements

The authors thank A. M. Weiner, the late M. L. Gorodetsky and F. Leo for discussions, and S. Yang for providing the dispersion compensating fibre. This work was supported in part by the National Natural Science Foundation of China (grant numbers 61690191, 61690192 and 61420106003) and the Beijing Municipal Natural Science Foundation (grant number 4172029).

Author information

Authors and Affiliations

Authors

Contributions

X.X. conceived the idea, performed the experiments and performed the theoretical analysis. X.Z. and B.Z. helped to explain the results. All the authors were involved in discussions and preparation of the manuscript.

Corresponding author

Correspondence to Xiaoxiao Xue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

This file contains more information about the work and Supplementary Figs. 1–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, X., Zheng, X. & Zhou, B. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics 13, 616–622 (2019). https://doi.org/10.1038/s41566-019-0436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0436-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing