Josephson vortices induced by phase twisting a polariton superfluid

Abstract

Quantum fluids of light are an emerging platform for energy-efficient signal processing, ultrasensitive interferometry and quantum simulators at elevated temperatures. Here we demonstrate all-optical control of the topological excitations in a large polariton condensate realizing the bosonic analogue of a long Josephson junction and inducing the nucleation of Josephson vortices. When a phase difference is imposed at the boundaries of the condensate, two extended regions become separated by a sharp phase jump of π radians and a solitonic depletion of the density, forming an insulating barrier with a suppressed order parameter. The superfluid behaviour—characterized by a smooth phase gradient across the system instead of the sharp phase jump—is recovered at higher polariton densities and is mediated by the nucleation of Josephson vortices within the barrier. Our results contribute to the understanding of dissipation and stability of elementary excitations in macroscale quantum systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Double phase locking of the condensate via external lasers.
Fig. 2: Phase and density of the condensate on phase twisting.
Fig. 3: Numerical simulations.
Fig. 4: Josephson vortices nucleation at the long Josephson junction.

Data availability

The raw experimental and numerical data used in this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  Article  Google Scholar 

  4. 4.

    Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys. 7, 635–641 (2011).

    Article  Google Scholar 

  5. 5.

    Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    Article  Google Scholar 

  6. 6.

    Lagoudakis, K. G., Pietka, B., Wouters, M., André, R. & Deveaud-Plédran, B. Coherent oscillations in an exciton-polariton Josephson junction. Phys. Rev. Lett. 105, 120403 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Abbarchi, M. et al. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons. Nat. Phys. 9, 275–279 (2013).

    Article  Google Scholar 

  8. 8.

    Sukhatme, K., Mukharsky, Y., Chui, T. & Pearson, D. Observation of the ideal Josephson effect in superfluid 4He. Nature 411, 280–283 (2001).

    ADS  Article  Google Scholar 

  9. 9.

    Tanzi, L. et al. Velocity-dependent quantum phase slips in 1D atomic superfluids. Sci. Rep. 6, 25965 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Abad, M. et al. Phase slips and vortex dynamics in Josephson oscillations between Bose-Einstein condensates. Europhys. Lett. 109, 40005 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Barone, A. & Paterno, G. Large Junctions— Static Self-Field Effects 96–120 (John Wiley & Sons, 2005).

  12. 12.

    Kaurov, V. M. & Kuklov, A. B. Josephson vortex between two atomic Bose-Einstein condensates. Phys. Rev. A 71, 011601 (2005).

    ADS  Article  Google Scholar 

  13. 13.

    Roditchev, D. et al. Direct observation of Josephson vortex cores. Nat. Phys. 11, 332–337 (2015).

    Article  Google Scholar 

  14. 14.

    Yoshizawa, S. et al. Imaging Josephson vortices on the surface superconductor \({\mathrm{Si}}(111){\mbox{-}}(\sqrt 7 \times \sqrt 3 ){\mbox{-}}{\mathrm{In}}\) using a scanning tunneling microscope. Phys. Rev. Lett. 113, 247004 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Kaurov, V. M. & Kuklov, A. B. Atomic Josephson vortices. Phys. Rev. A 73, 013627 (2006).

    ADS  Article  Google Scholar 

  16. 16.

    Abad, M., Guilleumas, M., Mayol, R., Pi, M. & Jezek, D. M. Phase slippage and self trapping in a self induced bosonic Josephson junction. Phys. Rev. A 84, 035601 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    Nelsen, B. et al. Dissipationless flow and sharp threshold of a polariton condensate with long lifetime. Phys. Rev. X 3, 041015 (2013).

    Google Scholar 

  18. 18.

    Steger, M. et al. Long range ballistic motion and coherent flow of long lifetime polaritons. Phys. Rev. B 88, 235314 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Sun, Y. et al. Bose-Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett. 118, 016602 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6, 860–864 (2010).

    Article  Google Scholar 

  21. 21.

    Kammann, E. et al. Nonlinear optical spin Hall effect and long-range spin transport in polariton lasers. Phys. Rev. Lett. 109, 036404 (2012).

    ADS  Article  Google Scholar 

  22. 22.

    Dreismann, A. et al. A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. Nat. Mater. 15, 1074–1078 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Ballarini, D. et al. Macroscopic two-dimensional polariton condensates. Phys. Rev. Lett. 118, 215301 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Caputo, D. et al. Topological order and equilibrium in a condensate of exciton-polaritons. Nat. Mater. 17, 145–151 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Antón, C. et al. Energy relaxation of exciton-polariton condensates in quasi-one-dimensional microcavities. Phys. Rev. B 88, 035313 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Wouters, M. Synchronized and desynchronized phases of coupled nonequilibrium exciton-polariton condensates. Phys. Rev. B 77, 121302 (2008).

    ADS  Article  Google Scholar 

  27. 27.

    Eastham, P. R. Mode locking and mode competition in a nonequilibrium solid-state condensate. Phys. Rev. B 78, 035319 (2008).

    ADS  Article  Google Scholar 

  28. 28.

    Denschlag, J. et al. Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287, 97–101 (2000).

    ADS  Article  Google Scholar 

  29. 29.

    Cataliotti, F. S. et al. Josephson junction arrays with Bose-Einstein condensates. Science 293, 843–846 (2001).

    ADS  Article  Google Scholar 

  30. 30.

    Janot, A., Hyart, T., Eastham, P. R. & Rosenow, B. Superfluid stiffness of a driven dissipative condensate with disorder. Phys. Rev. Lett. 111, 230403 (2013).

    ADS  Article  Google Scholar 

  31. 31.

    Swartzlander, G. A. & Law, C. T. Optical vortex solitons observed in Kerr nonlinear media. Phys. Rev. Lett. 69, 2503 (1992).

    ADS  Article  Google Scholar 

  32. 32.

    Goblot, V. et al. Phase-controlled bistability of a dark soliton train in a polariton fluid. Phys. Rev. Lett. 117, 217401 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Anderson, B. P. et al. Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett. 86, 2926–2929 (2001).

    ADS  Article  Google Scholar 

  34. 34.

    Ma, M., Carretero-González, R., Kevrekidis, P. G., Frantzeskakis, D. J. & Malomed, B. A. Controlling the transverse instability of dark solitons and nucleation of vortices by a potential barrier. Phys. Rev. A 82, 023621 (2010).

    ADS  Article  Google Scholar 

  35. 35.

    Verma, G., Rapol, U. D. & Nath, R. Generation of dark solitons and their instability dynamics in two-dimensional condensates. Phys. Rev. A 95, 043618 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Gallem, A., Guilleumas, M., Mayol, R. & Mateo, A. M. Multidimensional Josephson vortices in spin-orbit-coupled Bose-Einstein condensates: snake instability and decay through vortex dipoles. Phys. Rev. A 93, 033618 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Lagoudakis, K. G. et al. Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett. 106, 115301 (2011).

    ADS  Article  Google Scholar 

  38. 38.

    Dominici, L. et al. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Sci. Adv. 1, e1500807 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Gianfrate, A. et al. Superluminal x-waves in a polariton quantum fluid. Light Sci. Appl. 7, 17119 (2018).

    Article  Google Scholar 

  40. 40.

    Tosi, G. et al. Geometrically locked vortex lattices in semiconductor quantum fluids. Nat. Commun. 3, 1243 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Hivet, R. et al. Interaction-shaped vortex-antivortex lattices in polariton fluids. Phys. Rev. B 89, 134501 (2014).

    ADS  Article  Google Scholar 

  42. 42.

    Ohadi, H. et al. Nontrivial phase coupling in polariton multiplets. Phys. Rev. X 6, 031032 (2016).

    Google Scholar 

  43. 43.

    Mamaev, A. V., Saffman, M. & Zozulya, A. A. Propagation of dark stripe beams in nonlinear media: snake instability and creation of optical vortices. Phys. Rev. Lett. 76, 2262–2265 (1996).

    ADS  Article  Google Scholar 

  44. 44.

    Tikhonenko, V., Christou, J., Luther-Davies, B. & Kivshar, Y. S. Observation of vortex solitons created by the instability of dark soliton stripes. Opt. Lett. 21, 1129–1131 (1996).

    ADS  Article  Google Scholar 

  45. 45.

    Frantzeskakis, D. J. Dark solitons in atomic Bose-Einstein condensates: from theory to experiments. J. Phys. A 43, 213001 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  46. 46.

    Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).

    ADS  Article  Google Scholar 

  47. 47.

    Reinhardt, W. P. & Clark, C. W. Soliton dynamics in the collisions of Bose-Einstein condensates: an analogue of the Josephson effect. J. Phys. B 30, L785 (1997).

    ADS  Article  Google Scholar 

  48. 48.

    Su, S.-W., Gou, S.-C., Bradley, A., Fialko, O. & Brand, J. Kibble–Zurek scaling and its breakdown for spontaneous generation of Josephson vortices in Bose–Einstein condensates. Phys. Rev. Lett. 110, 215302 (2013).

    ADS  Article  Google Scholar 

  49. 49.

    Sieberer, L. M., Buchhold, M. & Diehl, S. Keldysh field theory for driven open quantum systems. Rep. Prog. Phys. 79, 096001 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

D.C., D.B. and D.S. acknowledge the ERC project POLAFLOW—Polariton condensates: from fundamental physics to quantum based devices (grant number 308136) and the ERC ‘ElecOpteR’ grant number 780757. N.B. and M.M. acknowlegde support from National Science Center grant numbers 2015/17/B/ST3/02273 and 2016/22/E/ST3/00045. The authors thank P. Cazzato for his constant help. Discussions with M. H. Szymańska are acknowledged. The work at Princeton University was funded by the Gordon and Betty Moore Foundation through the EPiQS initiative grant GBMF4420 and by the National Science Foundation MRSEC grant DMR 1420541.

Author information

Affiliations

Authors

Contributions

N.B. and M.M. developed the theoretical model and ran the numerical simulations. K.W. and L.N.P. grew the semiconductor microcavity sample used in the experiments. M.D.G., L.D. and G.G. provided technical support. D.C., D.S. and D.B. designed the experiment and analysed/discussed the results. All authors contributed to the discussion of the results and to the preparation of the manuscript.

Corresponding author

Correspondence to Dario Ballarini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caputo, D., Bobrovska, N., Ballarini, D. et al. Josephson vortices induced by phase twisting a polariton superfluid. Nat. Photonics 13, 488–493 (2019). https://doi.org/10.1038/s41566-019-0425-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing