Article | Published:

Josephson vortices induced by phase twisting a polariton superfluid


Quantum fluids of light are an emerging platform for energy-efficient signal processing, ultrasensitive interferometry and quantum simulators at elevated temperatures. Here we demonstrate all-optical control of the topological excitations in a large polariton condensate realizing the bosonic analogue of a long Josephson junction and inducing the nucleation of Josephson vortices. When a phase difference is imposed at the boundaries of the condensate, two extended regions become separated by a sharp phase jump of π radians and a solitonic depletion of the density, forming an insulating barrier with a suppressed order parameter. The superfluid behaviour—characterized by a smooth phase gradient across the system instead of the sharp phase jump—is recovered at higher polariton densities and is mediated by the nucleation of Josephson vortices within the barrier. Our results contribute to the understanding of dissipation and stability of elementary excitations in macroscale quantum systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The raw experimental and numerical data used in this study are available from the corresponding author on reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

  2. 2.

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

  3. 3.

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

  4. 4.

    Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys. 7, 635–641 (2011).

  5. 5.

    Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

  6. 6.

    Lagoudakis, K. G., Pietka, B., Wouters, M., André, R. & Deveaud-Plédran, B. Coherent oscillations in an exciton-polariton Josephson junction. Phys. Rev. Lett. 105, 120403 (2010).

  7. 7.

    Abbarchi, M. et al. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons. Nat. Phys. 9, 275–279 (2013).

  8. 8.

    Sukhatme, K., Mukharsky, Y., Chui, T. & Pearson, D. Observation of the ideal Josephson effect in superfluid 4He. Nature 411, 280–283 (2001).

  9. 9.

    Tanzi, L. et al. Velocity-dependent quantum phase slips in 1D atomic superfluids. Sci. Rep. 6, 25965 (2016).

  10. 10.

    Abad, M. et al. Phase slips and vortex dynamics in Josephson oscillations between Bose-Einstein condensates. Europhys. Lett. 109, 40005 (2015).

  11. 11.

    Barone, A. & Paterno, G. Large Junctions— Static Self-Field Effects 96–120 (John Wiley & Sons, 2005).

  12. 12.

    Kaurov, V. M. & Kuklov, A. B. Josephson vortex between two atomic Bose-Einstein condensates. Phys. Rev. A 71, 011601 (2005).

  13. 13.

    Roditchev, D. et al. Direct observation of Josephson vortex cores. Nat. Phys. 11, 332–337 (2015).

  14. 14.

    Yoshizawa, S. et al. Imaging Josephson vortices on the surface superconductor \({\mathrm{Si}}(111){\mbox{-}}(\sqrt 7 \times \sqrt 3 ){\mbox{-}}{\mathrm{In}}\) using a scanning tunneling microscope. Phys. Rev. Lett. 113, 247004 (2014).

  15. 15.

    Kaurov, V. M. & Kuklov, A. B. Atomic Josephson vortices. Phys. Rev. A 73, 013627 (2006).

  16. 16.

    Abad, M., Guilleumas, M., Mayol, R., Pi, M. & Jezek, D. M. Phase slippage and self trapping in a self induced bosonic Josephson junction. Phys. Rev. A 84, 035601 (2011).

  17. 17.

    Nelsen, B. et al. Dissipationless flow and sharp threshold of a polariton condensate with long lifetime. Phys. Rev. X 3, 041015 (2013).

  18. 18.

    Steger, M. et al. Long range ballistic motion and coherent flow of long lifetime polaritons. Phys. Rev. B 88, 235314 (2013).

  19. 19.

    Sun, Y. et al. Bose-Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett. 118, 016602 (2017).

  20. 20.

    Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6, 860–864 (2010).

  21. 21.

    Kammann, E. et al. Nonlinear optical spin Hall effect and long-range spin transport in polariton lasers. Phys. Rev. Lett. 109, 036404 (2012).

  22. 22.

    Dreismann, A. et al. A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. Nat. Mater. 15, 1074–1078 (2016).

  23. 23.

    Ballarini, D. et al. Macroscopic two-dimensional polariton condensates. Phys. Rev. Lett. 118, 215301 (2017).

  24. 24.

    Caputo, D. et al. Topological order and equilibrium in a condensate of exciton-polaritons. Nat. Mater. 17, 145–151 (2018).

  25. 25.

    Antón, C. et al. Energy relaxation of exciton-polariton condensates in quasi-one-dimensional microcavities. Phys. Rev. B 88, 035313 (2013).

  26. 26.

    Wouters, M. Synchronized and desynchronized phases of coupled nonequilibrium exciton-polariton condensates. Phys. Rev. B 77, 121302 (2008).

  27. 27.

    Eastham, P. R. Mode locking and mode competition in a nonequilibrium solid-state condensate. Phys. Rev. B 78, 035319 (2008).

  28. 28.

    Denschlag, J. et al. Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287, 97–101 (2000).

  29. 29.

    Cataliotti, F. S. et al. Josephson junction arrays with Bose-Einstein condensates. Science 293, 843–846 (2001).

  30. 30.

    Janot, A., Hyart, T., Eastham, P. R. & Rosenow, B. Superfluid stiffness of a driven dissipative condensate with disorder. Phys. Rev. Lett. 111, 230403 (2013).

  31. 31.

    Swartzlander, G. A. & Law, C. T. Optical vortex solitons observed in Kerr nonlinear media. Phys. Rev. Lett. 69, 2503 (1992).

  32. 32.

    Goblot, V. et al. Phase-controlled bistability of a dark soliton train in a polariton fluid. Phys. Rev. Lett. 117, 217401 (2016).

  33. 33.

    Anderson, B. P. et al. Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett. 86, 2926–2929 (2001).

  34. 34.

    Ma, M., Carretero-González, R., Kevrekidis, P. G., Frantzeskakis, D. J. & Malomed, B. A. Controlling the transverse instability of dark solitons and nucleation of vortices by a potential barrier. Phys. Rev. A 82, 023621 (2010).

  35. 35.

    Verma, G., Rapol, U. D. & Nath, R. Generation of dark solitons and their instability dynamics in two-dimensional condensates. Phys. Rev. A 95, 043618 (2017).

  36. 36.

    Gallem, A., Guilleumas, M., Mayol, R. & Mateo, A. M. Multidimensional Josephson vortices in spin-orbit-coupled Bose-Einstein condensates: snake instability and decay through vortex dipoles. Phys. Rev. A 93, 033618 (2016).

  37. 37.

    Lagoudakis, K. G. et al. Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett. 106, 115301 (2011).

  38. 38.

    Dominici, L. et al. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Sci. Adv. 1, e1500807 (2015).

  39. 39.

    Gianfrate, A. et al. Superluminal x-waves in a polariton quantum fluid. Light Sci. Appl. 7, 17119 (2018).

  40. 40.

    Tosi, G. et al. Geometrically locked vortex lattices in semiconductor quantum fluids. Nat. Commun. 3, 1243 (2012).

  41. 41.

    Hivet, R. et al. Interaction-shaped vortex-antivortex lattices in polariton fluids. Phys. Rev. B 89, 134501 (2014).

  42. 42.

    Ohadi, H. et al. Nontrivial phase coupling in polariton multiplets. Phys. Rev. X 6, 031032 (2016).

  43. 43.

    Mamaev, A. V., Saffman, M. & Zozulya, A. A. Propagation of dark stripe beams in nonlinear media: snake instability and creation of optical vortices. Phys. Rev. Lett. 76, 2262–2265 (1996).

  44. 44.

    Tikhonenko, V., Christou, J., Luther-Davies, B. & Kivshar, Y. S. Observation of vortex solitons created by the instability of dark soliton stripes. Opt. Lett. 21, 1129–1131 (1996).

  45. 45.

    Frantzeskakis, D. J. Dark solitons in atomic Bose-Einstein condensates: from theory to experiments. J. Phys. A 43, 213001 (2010).

  46. 46.

    Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).

  47. 47.

    Reinhardt, W. P. & Clark, C. W. Soliton dynamics in the collisions of Bose-Einstein condensates: an analogue of the Josephson effect. J. Phys. B 30, L785 (1997).

  48. 48.

    Su, S.-W., Gou, S.-C., Bradley, A., Fialko, O. & Brand, J. Kibble–Zurek scaling and its breakdown for spontaneous generation of Josephson vortices in Bose–Einstein condensates. Phys. Rev. Lett. 110, 215302 (2013).

  49. 49.

    Sieberer, L. M., Buchhold, M. & Diehl, S. Keldysh field theory for driven open quantum systems. Rep. Prog. Phys. 79, 096001 (2016).

Download references


D.C., D.B. and D.S. acknowledge the ERC project POLAFLOW—Polariton condensates: from fundamental physics to quantum based devices (grant number 308136) and the ERC ‘ElecOpteR’ grant number 780757. N.B. and M.M. acknowlegde support from National Science Center grant numbers 2015/17/B/ST3/02273 and 2016/22/E/ST3/00045. The authors thank P. Cazzato for his constant help. Discussions with M. H. Szymańska are acknowledged. The work at Princeton University was funded by the Gordon and Betty Moore Foundation through the EPiQS initiative grant GBMF4420 and by the National Science Foundation MRSEC grant DMR 1420541.

Author information

N.B. and M.M. developed the theoretical model and ran the numerical simulations. K.W. and L.N.P. grew the semiconductor microcavity sample used in the experiments. M.D.G., L.D. and G.G. provided technical support. D.C., D.S. and D.B. designed the experiment and analysed/discussed the results. All authors contributed to the discussion of the results and to the preparation of the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Dario Ballarini.

Supplementary information

  1. Supplementary Information

    Supplementary notes and figures

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Fig. 1: Double phase locking of the condensate via external lasers.
Fig. 2: Phase and density of the condensate on phase twisting.
Fig. 3: Numerical simulations.
Fig. 4: Josephson vortices nucleation at the long Josephson junction.