Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surface passivation of perovskite film for efficient solar cells

An Author Correction to this article was published on 08 May 2019

This article has been updated


In recent years, the power conversion efficiency of perovskite solar cells has increased to reach over 20%. Finding an effective means of defect passivation is thought to be a promising route for bringing further increases in the power conversion efficiency and the open-circuit voltage (VOC) of perovskite solar cells. Here, we report the use of an organic halide salt phenethylammonium iodide (PEAI) on HC(NH2)2–CH3NH3 mixed perovskite films for surface defect passivation. We find that PEAI can form on the perovskite surface and results in higher-efficiency cells by reducing the defects and suppressing non-radiative recombination. As a result, planar perovskite solar cells with a certificated efficiency of 23.32% (quasi-steady state) are obtained. In addition, a VOC as high as 1.18 V is achieved at the absorption threshold of 1.53 eV, which is 94.4% of the Shockley–Queisser limit VOC (1.25 V).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Device structure, possible passivation mechanism and states of PEAI on the perovskite surface.
Fig. 2: Surface passivation of perovskite layer by PEAI.
Fig. 3: Device performance.
Fig. 4: Characterization of the devices.
Fig. 5: Thermal stability of the devices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 08 May 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  2. 2.

    Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  3. 3.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    ADS  Article  Google Scholar 

  4. 4.

    Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Nie, W. et al. High efficiency millimeter-scale crystalline perovskite solar cells. Science 347, 522–525 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Jiang, Q. et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Anaraki, E. H. et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9, 3128–3134 (2016).

    Article  Google Scholar 

  11. 11.

    Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Green, M. A. et al. Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26, 3–12 (2018).

    Article  Google Scholar 

  14. 14.

    Wetzelaer, G. A. H. et al. Trap-assisted non-radiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015).

    Article  Google Scholar 

  15. 15.

    Wang, Q. et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734–6739 (2016).

    Article  Google Scholar 

  16. 16.

    Manser, J. S., Saidaminov, M. I., Christians, J. A., Bakr, O. M. & Kamat, P. V. Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330–338 (2016).

    Article  Google Scholar 

  17. 17.

    Buin, A. et al. Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Yin, W. J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Zhao, T., Chueh, C. C., Chen, Q., Rajagopal, A. & Jen, A. K. Y. Defect passivation of organic−inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 1, 757–763 (2016).

    Article  Google Scholar 

  21. 21.

    Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Wang, L., McCleese, C., Kovalsky, A., Zhao, Y. & Burda, C. Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136, 12205–12208 (2014).

    Article  Google Scholar 

  24. 24.

    Jiang, Q. et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017).

    Article  Google Scholar 

  25. 25.

    Cho, K. T. et al. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 10, 621–627 (2017).

    Article  Google Scholar 

  26. 26.

    Chen, P. et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 28, 1706923 (2018).

    Article  Google Scholar 

  27. 27.

    Cho, Y. et al. Mixed 3D–2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Adv. Energy Mater. 8, 1703392 (2018).

    Article  Google Scholar 

  28. 28.

    Cho, K. T. et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 11, 952–959 (2018).

    Article  Google Scholar 

  29. 29.

    Lin, Y. et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 9, 654–658 (2018).

    Article  Google Scholar 

  30. 30.

    Yoo, H. S. & Park, N. G. Post-treatment of perovskite film with phenylalkylammonium iodide for hysteresis-less perovskite solar cells. Sol. Energy Mater. Sol. Cells 179, 57–65 (2018).

    Article  Google Scholar 

  31. 31.

    Li, N. et al. Enhanced moisture stability of cesium-containing compositional perovskites by a feasible interfacial engineering. Adv. Mater. Interfaces 4, 1700598 (2017).

    Article  Google Scholar 

  32. 32.

    Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Abate, A. et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Xiao, Z. et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7, 2619–2623 (2014).

    Article  Google Scholar 

  35. 35.

    Im, J. H., Jang, I. H., Pellet, N., Gratzel, M. & Park, N. G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927–932 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014).

    Article  Google Scholar 

  38. 38.

    Li, X. et al. A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic−inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    Article  Google Scholar 

  40. 40.

    Green, M. A., Jiang, Y., Soufiani, A. M. & Ho-Baillie, A. Optical properties of photovoltaic organic−inorganic lead halide perovskites. J. Phys. Chem. Lett. 6, 4774–4785 (2015).

    Article  Google Scholar 

  41. 41.

    Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    Article  Google Scholar 

  42. 42.

    Yang, D. et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9, 3071–3078 (2016).

    Article  Google Scholar 

  43. 43.

    Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015).

    Article  Google Scholar 

  44. 44.

    Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    ADS  Article  Google Scholar 

  45. 45.

    Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).

    Article  Google Scholar 

  46. 46.

    Dousmanis, G. C., Mueller, C. W., Nelson, H. & Petzinger, K. G. Evidence of refrigerating action by means of photon emission in semiconductor diodes. Phy. Rev. 133, A316–A318 (1964).

    ADS  Article  Google Scholar 

  47. 47.

    Braly, I. L. et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photon. 12, 355–361 (2018).

    ADS  Article  Google Scholar 

  48. 48.

    Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    ADS  Article  Google Scholar 

  49. 49.

    Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Meng, L. et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 140, 17255–17262 (2018).

    Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (grant numbers 61634001 and 61574133), the National Key Research and Development Program of China (grant number 2016YFB0700700), the Beijing Municipal Science & Technology Commission (grant numbers Z181100004718005 and Z181100005118002) and also by the National 1000 Young Talents awards. We thank Y. S. Liu from Nankai University for helping with the transit photovoltage and photocurrent characterizations, and C. Y. Zhou from Enlitech for helping with the photoluminescence mapping measurement.

Author information




J.Y. conceived the idea, directed and supervised the project. Q.J. initialized this project, fabricated and characterized the devices. Y.Z. took part in the device fabrication and characterizations. X.Z., X.Y., C.Y., Z.C., Q.Y., X.L. and Z.Y. were involved in the data analysis. J.Y., J.Q., Y.Z. and X.Z. co-wrote the manuscript. All authors contributed to discussions and to finalizing the manuscript.

Corresponding author

Correspondence to Jingbi You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Morphology analysis, photoluminescence lifetimes and certificate of operation.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Zhao, Y., Zhang, X. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing