Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces

Abstract

Metasurfaces based on resonant subwavelength photonic structures enable novel ways of wavefront control and light focusing, underpinning a new generation of flat-optics devices1. Recently emerged all-dielectric asymmetric metasurfaces, composed of arrays of metaunits with broken in-plane inversion symmetry2,3,4,5,6,7, exhibit high-quality resonances originating from the intriguing physics of bound states in the continuum. Here, we combine dielectric metasurfaces and hyperspectral imaging to develop an ultrasensitive label-free analytical platform for biosensing. Our technique can acquire spatially resolved spectra from millions of image pixels and use smart data-processing tools to extract high-throughput digital sensing information at the unprecedented level of less than three molecules per μm2. We further show spectral data retrieval from a single image without using spectrometers, enabled by our unique sensor design, paving the way for portable diagnostic applications. This combination of nanophotonics and imaging optics extends the capabilities of dielectric metasurfaces to analyse biological entities and atomic-layer-thick two-dimensional materials over large areas.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Principle of hyperspectral imaging-based biomolecule detection using all-dielectric metasurfaces.
Fig. 2: Geometrically tunable high-Q dielectric metasurfaces based on quasi-BIC modes.
Fig. 3: Biosensing using dielectric metasurface sensors and image-based data processing.
Fig. 4: Barcode-based sensing with multi-resonance dielectric metasurfaces.
Fig. 5: Optical characterization of SLG using dielectric metasurface.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The custom codes used in this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Capasso, F. The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953–957 (2018).

    Article  Google Scholar 

  2. 2.

    Campione, S. et al. Broken symmetry dielectric resonators for high quality factor fano metasurfaces. ACS Photon 3, 2362–2367 (2016).

    Article  Google Scholar 

  3. 3.

    Liu, M., Powell, D. A., Guo, R., Shadrivov, I. V. & Kivshar, Y. S. Polarization-induced chirality in metamaterials via optomechanical interaction. Adv. Opt. Mater. 5, 1600760 (2017).

    Article  Google Scholar 

  4. 4.

    Tuz, V. R. et al. High-quality trapped modes in all-dielectric metamaterials. Opt. Express 26, 2905–2916 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    ADS  Article  Google Scholar 

  7. 7.

    Koshelev, K., Bogdanov, A. & Kivshar, Y. Meta-optics and bound states in the continuum. Sci. Bull. https://doi.org/10.1016/j.scib.2018.12.003 (2018).

  8. 8.

    von Neuman, J. & Wigner, E. Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Physikalische Zeitschrift 30, 467–470 (1929).

  9. 9.

    Friedrich, H. & Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A 32, 3231–3242 (1985).

    ADS  Article  Google Scholar 

  10. 10.

    Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 100, 183902 (2008).

    ADS  Article  Google Scholar 

  11. 11.

    Bulgakov, E. N. & Sadreev, A. F. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B 78, 075105 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    Rybin, M. & Kivshar, Y. Optical physics: supercavity lasing. Nature 541, 164–165 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Doeleman, H. M., Monticone, F., Den Hollander, W., Alù, A. & Koenderink, A. F. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photon. 12, 397–401 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photon. 4, 2638–2649 (2017).

    Article  Google Scholar 

  15. 15.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  Google Scholar 

  16. 16.

    Fabrizio, E. D. et al. Roadmap on biosensing and photonics with advanced nano-optical methods. J. Opt. 18, 063003 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Bontempi, N. et al. Highly sensitive biosensors based on all-dielectric nanoresonators. Nanoscale 9, 4972–4980 (2017).

    Article  Google Scholar 

  18. 18.

    Yavas, O., Svedendahl, M., Dobosz, P., Sanz, V. & Quidant, R. On-a-chip biosensing based on all-dielectric nanoresonators. Nano Lett. 17, 4421–4426 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Lee, S. H., Lindquist, N. C., Wittenberg, N. J., Jordan, L. R. & Oh, S.-H. Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab Chip 12, 3882–3890 (2012).

    Article  Google Scholar 

  20. 20.

    Ballard, Z. S. et al. Computational sensing using low-cost and mobile plasmonic readers designed by machine learning. ACS Nano 11, 2266–2274 (2017).

    Article  Google Scholar 

  21. 21.

    Tsukruk, V. V., Luzinov, I. & Julthongpiput, D. Sticky molecular surfaces: epoxysilane self-assembled monolayers. Langmuir 15, 3029–3032 (1999).

    Article  Google Scholar 

  22. 22.

    Walt, D. R. Optical methods for single molecule detection and analysis. Anal. Chem. 85, 1258–1263 (2013).

    Article  Google Scholar 

  23. 23.

    Bradley, A. P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30, 1145–1159 (1997).

    Article  Google Scholar 

  24. 24.

    Karst, J., Strohfeldt, N., Schäferling, M., Giessen, H. & Hentschel, M. Single plasmonic oligomer chiral spectroscopy. Adv. Opt. Mater. 6, 1800087 (2018).

    Article  Google Scholar 

  25. 25.

    Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Ni, Z. H. et al. Probing charged impurities in suspended graphene using Raman spectroscopy. ACS Nano 3, 569–574 (2009).

    Article  Google Scholar 

  27. 27.

    Ghamsari, B. G., Tosado, J., Yamamoto, M., Fuhrer, M. S. & Anlage, S. M. Measuring the complex optical conductivity of graphene by Fabry–Pérot reflectance spectroscopy. Sci. Rep. 6, 34166 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Ogletree, D. F. et al. Revealing optical properties of reduced-dimensionality materials at relevant length scales. Adv. Mater. 27, 5693–5719 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D.N. Neshev, A. Avsar and A. Belushkin for fruitful discussions, Y. Pandey and S. Confederat for assistance in preparing the sensor chips, A. Magrez for assistance with Raman spectroscopy, École polytechnique fédérale de Lausanne and Center of MicroNano Technology for nanofabrication. The research leading to these results has received funding from the European Research Council under grant agreement no. 682167 VIBRANT-BIO and the European Union Horizon 2020 Framework Programme for Research and Innovation under grant agreements no. 665667 (call 2015), no. 777714 (NOCTURNO project), no. FETOPEN-737071 (ULTRACHIRAL project) and no. 644956 (RAIS project). Y.K. acknowledges support from the Strategic Fund of the Australian National University.

Author information

Affiliations

Authors

Contributions

F.Y., E.R.A., Y.K. and H.A. conceived and designed the research. F.Y. and Y.J. fabricated the dielectric metasurfaces. F.Y. and E.R.A. carried out optical measurements. F.Y., E.R.A., V.C. and H.A. analysed data. F.Y., Y.J., A.T. and M.L. carried out numerical simulations. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Hatice Altug.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Fabrication process and additional discussion, Supplementary Figures 1–12, Supplementary Table 1 and Supplementary References 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yesilkoy, F., Arvelo, E.R., Jahani, Y. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13, 390–396 (2019). https://doi.org/10.1038/s41566-019-0394-6

Download citation

Further reading