Metasurfaces based on resonant subwavelength photonic structures enable novel ways of wavefront control and light focusing, underpinning a new generation of flat-optics devices1. Recently emerged all-dielectric asymmetric metasurfaces, composed of arrays of metaunits with broken in-plane inversion symmetry2,3,4,5,6,7, exhibit high-quality resonances originating from the intriguing physics of bound states in the continuum. Here, we combine dielectric metasurfaces and hyperspectral imaging to develop an ultrasensitive label-free analytical platform for biosensing. Our technique can acquire spatially resolved spectra from millions of image pixels and use smart data-processing tools to extract high-throughput digital sensing information at the unprecedented level of less than three molecules per μm2. We further show spectral data retrieval from a single image without using spectrometers, enabled by our unique sensor design, paving the way for portable diagnostic applications. This combination of nanophotonics and imaging optics extends the capabilities of dielectric metasurfaces to analyse biological entities and atomic-layer-thick two-dimensional materials over large areas.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The custom codes used in this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Capasso, F. The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953–957 (2018).

  2. 2.

    Campione, S. et al. Broken symmetry dielectric resonators for high quality factor fano metasurfaces. ACS Photon 3, 2362–2367 (2016).

  3. 3.

    Liu, M., Powell, D. A., Guo, R., Shadrivov, I. V. & Kivshar, Y. S. Polarization-induced chirality in metamaterials via optomechanical interaction. Adv. Opt. Mater. 5, 1600760 (2017).

  4. 4.

    Tuz, V. R. et al. High-quality trapped modes in all-dielectric metamaterials. Opt. Express 26, 2905–2916 (2018).

  5. 5.

    Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

  6. 6.

    Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

  7. 7.

    Koshelev, K., Bogdanov, A. & Kivshar, Y. Meta-optics and bound states in the continuum. Sci. Bull. https://doi.org/10.1016/j.scib.2018.12.003 (2018).

  8. 8.

    von Neuman, J. & Wigner, E. Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Physikalische Zeitschrift 30, 467–470 (1929).

  9. 9.

    Friedrich, H. & Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A 32, 3231–3242 (1985).

  10. 10.

    Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 100, 183902 (2008).

  11. 11.

    Bulgakov, E. N. & Sadreev, A. F. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B 78, 075105 (2008).

  12. 12.

    Rybin, M. & Kivshar, Y. Optical physics: supercavity lasing. Nature 541, 164–165 (2017).

  13. 13.

    Doeleman, H. M., Monticone, F., Den Hollander, W., Alù, A. & Koenderink, A. F. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photon. 12, 397–401 (2018).

  14. 14.

    Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photon. 4, 2638–2649 (2017).

  15. 15.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

  16. 16.

    Fabrizio, E. D. et al. Roadmap on biosensing and photonics with advanced nano-optical methods. J. Opt. 18, 063003 (2016).

  17. 17.

    Bontempi, N. et al. Highly sensitive biosensors based on all-dielectric nanoresonators. Nanoscale 9, 4972–4980 (2017).

  18. 18.

    Yavas, O., Svedendahl, M., Dobosz, P., Sanz, V. & Quidant, R. On-a-chip biosensing based on all-dielectric nanoresonators. Nano Lett. 17, 4421–4426 (2017).

  19. 19.

    Lee, S. H., Lindquist, N. C., Wittenberg, N. J., Jordan, L. R. & Oh, S.-H. Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab Chip 12, 3882–3890 (2012).

  20. 20.

    Ballard, Z. S. et al. Computational sensing using low-cost and mobile plasmonic readers designed by machine learning. ACS Nano 11, 2266–2274 (2017).

  21. 21.

    Tsukruk, V. V., Luzinov, I. & Julthongpiput, D. Sticky molecular surfaces: epoxysilane self-assembled monolayers. Langmuir 15, 3029–3032 (1999).

  22. 22.

    Walt, D. R. Optical methods for single molecule detection and analysis. Anal. Chem. 85, 1258–1263 (2013).

  23. 23.

    Bradley, A. P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30, 1145–1159 (1997).

  24. 24.

    Karst, J., Strohfeldt, N., Schäferling, M., Giessen, H. & Hentschel, M. Single plasmonic oligomer chiral spectroscopy. Adv. Opt. Mater. 6, 1800087 (2018).

  25. 25.

    Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

  26. 26.

    Ni, Z. H. et al. Probing charged impurities in suspended graphene using Raman spectroscopy. ACS Nano 3, 569–574 (2009).

  27. 27.

    Ghamsari, B. G., Tosado, J., Yamamoto, M., Fuhrer, M. S. & Anlage, S. M. Measuring the complex optical conductivity of graphene by Fabry–Pérot reflectance spectroscopy. Sci. Rep. 6, 34166 (2016).

  28. 28.

    Ogletree, D. F. et al. Revealing optical properties of reduced-dimensionality materials at relevant length scales. Adv. Mater. 27, 5693–5719 (2015).

Download references


The authors thank D.N. Neshev, A. Avsar and A. Belushkin for fruitful discussions, Y. Pandey and S. Confederat for assistance in preparing the sensor chips, A. Magrez for assistance with Raman spectroscopy, École polytechnique fédérale de Lausanne and Center of MicroNano Technology for nanofabrication. The research leading to these results has received funding from the European Research Council under grant agreement no. 682167 VIBRANT-BIO and the European Union Horizon 2020 Framework Programme for Research and Innovation under grant agreements no. 665667 (call 2015), no. 777714 (NOCTURNO project), no. FETOPEN-737071 (ULTRACHIRAL project) and no. 644956 (RAIS project). Y.K. acknowledges support from the Strategic Fund of the Australian National University.

Author information


  1. Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland

    • Filiz Yesilkoy
    • , Eduardo R. Arvelo
    • , Yasaman Jahani
    • , Andreas Tittl
    •  & Hatice Altug
  2. Institute of Electrical Engineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland

    • Eduardo R. Arvelo
    •  & Volkan Cevher
  3. Nonlinear Physics Centre, Australian National University, Canberra, Australian Capital Territory, Australia

    • Mingkai Liu
    •  & Yuri Kivshar


  1. Search for Filiz Yesilkoy in:

  2. Search for Eduardo R. Arvelo in:

  3. Search for Yasaman Jahani in:

  4. Search for Mingkai Liu in:

  5. Search for Andreas Tittl in:

  6. Search for Volkan Cevher in:

  7. Search for Yuri Kivshar in:

  8. Search for Hatice Altug in:


F.Y., E.R.A., Y.K. and H.A. conceived and designed the research. F.Y. and Y.J. fabricated the dielectric metasurfaces. F.Y. and E.R.A. carried out optical measurements. F.Y., E.R.A., V.C. and H.A. analysed data. F.Y., Y.J., A.T. and M.L. carried out numerical simulations. All authors contributed to writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Hatice Altug.

Supplementary information

  1. Supplementary Information

    Fabrication process and additional discussion, Supplementary Figures 1–12, Supplementary Table 1 and Supplementary References 1–6.

About this article

Publication history