A room-temperature organic polariton transistor


Active optical elements with ever smaller footprint and lower energy consumption are central to modern photonics. The drive for miniaturization, speed and efficiency, with the concomitant volume reduction of the optically active area, has led to the development of devices that harness strong light–matter interactions. By managing the strength of light–matter coupling to exceed losses, quasiparticles, called exciton-polaritons, are formed that combine the properties of the optical fields with the electronic excitations of the active material. By making use of polaritons in inorganic semiconductor microcavities, all-optical transistor functionality was observed, albeit at cryogenic temperatures1. Here, we replace inorganic semiconductors with a ladder-type polymer in an optical microcavity and realize room-temperature operation of a polariton transistor through vibron-mediated stimulated polariton relaxation. We demonstrate net gain of ~10 dB μm−1, sub-picosecond switching time, cascaded amplification and all-optical logic operation at ambient conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Organic microcavity and relevant energy levels.
Fig. 2: Spontaneous versus dynamic polariton condensation.
Fig. 3: Characteristics of the organic polariton transistor.
Fig. 4: Cascaded amplification and logic gates.

Data availability

All data supporting this study are openly available from the University of Southampton repository at https://doi.org/10.5258/SOTON/D0792.


  1. 1.

    Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

    Article  Google Scholar 

  2. 2.

    Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities Vol. 21 (Oxford University Press, 2017).

  3. 3.

    Savvidis, P. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547 (2000).

    ADS  Article  Google Scholar 

  4. 4.

    Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001).

    ADS  Article  Google Scholar 

  5. 5.

    Nguyen, H. S. et al. Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys. Rev. Lett. 110, 236601 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    Marsault, F. et al. Realization of an all optical exciton-polariton router. Appl. Phys. Lett. 107, 201115 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat. Commun. 5, 3278 (2014).

    Article  Google Scholar 

  8. 8.

    Amo, A. et al. Exciton-polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Gao, T. et al. Polariton condensate transistor switch. Phys. Rev. B 85, 235102 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Cerna, R. et al. Ultrafast tristable spin memory of a coherent polariton gas. Nat. Commun. 4, 2008 (2013).

    Article  Google Scholar 

  11. 11.

    Christmann, G., Butté, R., Feltin, E., Carlin, J.-F. & Grandjean, N. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    Lu, T.-C. et al. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Opt. Express 20, 5530–5537 (2012).

    ADS  Article  Google Scholar 

  13. 13.

    Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371–375 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 13, 247–252 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Daskalakis, K. S., Maier, S. A., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Dietrich, C. P. et al. An exciton-polariton laser based on biologically produced fluorescent protein. Sci. Adv. 2, e1600666 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Cookson, T. et al. A yellow polariton condensate in a dye filled microcavity. Adv. Opt. Mater. 5, 1700203 (2017).

    Article  Google Scholar 

  18. 18.

    Michetti, P. & La Rocca, G. Exciton–phonon scattering and photoexcitation dynamics in J-aggregate microcavities. Phys. Rev. B 79, 035325 (2009).

    ADS  Article  Google Scholar 

  19. 19.

    Mazza, L., Kéna-Cohen, S., Michetti, P. & La Rocca, G. C. Microscopic theory of polariton lasing via vibronically assisted scattering. Phys. Rev. B 88, 075321 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691–3696 (2011).

    Article  Google Scholar 

  21. 21.

    Somaschi, N. et al. Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities. Appl. Phys. Lett 99, 209 (2011).

    Article  Google Scholar 

  22. 22.

    Deng, H. et al. Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97, 146402 (2006).

    ADS  Article  Google Scholar 

  23. 23.

    Maragkou, M., Grundy, A. J. D., Ostatnický, T. & Lagoudakis, P. G. Longitudinal optical phonon assisted polariton laser. Appl. Phys. Lett. 97, 111110 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    Gadermaier, C. et al. Dynamics of higher photoexcited states in m-LPPP probed with sub-20 fs time resolution. Chem. Phys. Lett. 384, 251–255 (2004).

    ADS  Article  Google Scholar 

  25. 25.

    Schweitzer, B. et al. Spontaneous and stimulated emission from a ladder-type conjugated polymer. Phys. Rev. B 59, 4112 (1999).

    ADS  Article  Google Scholar 

  26. 26.

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  Article  Google Scholar 

  27. 27.

    Klaers, J. et al. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    ADS  Article  Google Scholar 

  28. 28.

    Kammann, E., Ohadi, H., Maragkou, M., Kavokin, A. V. & Lagoudakis, P. G. Crossover from photon to exciton-polariton lasing. New J. Phys. 14, 105003 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    Article  Google Scholar 

  30. 30.

    Scherf, U., Bohnen, A. & Müllen, K. Polyarylenes and poly(arylenevinylene)s, 9 The oxidized states of a (1, 4-phenylene) ladder polymer. Makromol. Chem. 193, 1127–1133 (1992).

    Article  Google Scholar 

Download references


The authors acknowledge the assistance of T. Yagafarov in demonstrating the AND gate operation. This work was partly supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) and the European Union's Horizon-2020 framework programme through the Marie-Sklodowska Curie ITN networks PHONSI (H2020-MSCA-ITN-642656), SYNCHRONICS (H2020-MSCA-ITN-643238), UK Engineering and Physical Sciences Research Council grant EP/M025330/1 on Hybrid Polaritonics, MIT-Skoltech NGP Program and the Russian Science Foundation (RSF) grant no. 18-72-00227.

Author information




R.F.M. and P.G.L. designed the research. A.V.Z. and A.V.B. performed the experiments and analysed the experimental data. D.U., F.S., T.S. and R.F.M. contributed to the design and fabrication of the organic microcavity. U.S. synthesized the organic material. The manuscript was written through contributions from all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Pavlos G. Lagoudakis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Results, Supplementary Figures 1–12 and Supplementary References 1–21.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zasedatelev, A.V., Baranikov, A.V., Urbonas, D. et al. A room-temperature organic polariton transistor. Nat. Photonics 13, 378–383 (2019). https://doi.org/10.1038/s41566-019-0392-8

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing