Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Graphene–semiconductor heterojunction sheds light on emerging photovoltaics

Abstract

Electronic coupling of graphene atop a bulk semiconductor and the resultant interfacial energy-band reorganization create a light-sensitive junction only one atom below the front surface. Uniquely, this architecture leads to the surface being in extremely close proximity to the depletion region (typically buried several micrometres under the surface for a conventional wafer-based p–n junction solar cell), thus providing direct access to the photosensitive junction, which can be modified by surface functionalization and/or incorporation of plasmonic nanoparticles. The surface-based heterojunction, tunable carrier transport and relatively enhanced optical absorption in such 2D-layer-interfaced 3D semiconductor systems will have a transformative impact in the field of 2D optoelectronics, photovoltaics, photonics and nanoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of a graphene-on-semiconductor (Si) heterojunction photovoltaic cell.
Fig. 2: Graphene-on-semiconductor (n-Si) energy-band structure.
Fig. 3: Graphene/Si heterojunction photovoltaics.
Fig. 4: Graphene/III–V semiconductor heterojunction photovoltaics.

Similar content being viewed by others

References

  1. Won, R. Photovoltaics: graphene–silicon solar cells. Nat Photon. 4, 411 (2010).

    Article  ADS  Google Scholar 

  2. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  3. Vaianella, F., Rosolen, G. & Maes, B. Graphene as a transparent electrode for amorphous silicon-based solar cells. J. Appl. Phys. 117, 243102 (2015).

    Article  ADS  Google Scholar 

  4. Lee, T. et al. InGaN-based p–i–n solar cells with graphene electrodes. Appl. Phys. Express 4, 052302 (2011).

    Article  ADS  Google Scholar 

  5. Behura, S. K., Nayak, S., Mukhopadhyay, I. & Jani, O. Junction characteristics of chemically-derived graphene/p-Si heterojunction solar cell. Carbon 67, 766–774 (2014).

    Article  Google Scholar 

  6. Kavan, L., Yum, J. H. & Grätzel, M. Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5, 165–172 (2011).

    Article  Google Scholar 

  7. Wang, Y., Chen, X., Zhong, Y., Zhu, F. & Loh, K. P. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 95, 063302 (2009).

    Article  ADS  Google Scholar 

  8. Yang, Q.-D. et al. Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability. J. Mater. Chem. A 5, 9852–9858 (2017).

    Article  Google Scholar 

  9. Li, X., Lv, Z. L. & Zhu, H. Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv. Mater. 27, 6549–6574 (2015).

    Article  Google Scholar 

  10. Sze, S. M. Physics of Semiconductor Devices 2nd edn (Wiley, 1981). .

  11. Park, H. K. & Choi, J. Origin of voltage-dependent high ideality factors in graphene–silicon diodes. Adv. Electron. Mater. 4, 1700317 (2018).

    Article  Google Scholar 

  12. Ryu, S. et al. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 10, 4944–4951 (2010).

    Article  ADS  Google Scholar 

  13. Xu, D., Yu, X., Yang, L. & Yang, D. Interface engineering of graphene–silicon heterojunction solar cells. Superlattices Microstruct. 99, 3–12 (2016).

    Article  ADS  Google Scholar 

  14. Li, X. & Zhu, H. The graphene–semiconductor Schottky junction. Phys. Today 69, 46–51 (2016).

    Article  Google Scholar 

  15. Bhopal, M. F., Lee, D. W., ur Rehman, A. & Lee, S. H. Past and future of graphene/silicon heterojunction solar cells: a review. J. Mater. Chem. C 5, 10701–10714 (2017).

    Article  Google Scholar 

  16. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article  ADS  Google Scholar 

  17. Li, X. et al. Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22, 2743–2748 (2010).

    Article  Google Scholar 

  18. Li, X. et al. Ion doping of graphene for high-efficiency heterojunction solar cells. Nanoscale 5, 1945–1948 (2013).

    Article  ADS  Google Scholar 

  19. Cui, T. X. et al. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. J. Mater. Chem. A 1, 5736–5740 (2013).

    Article  Google Scholar 

  20. Liu, X. et al. Enhanced efficiency of graphene–silicon Schottky junction solar cells by doping with Au nanoparticles. Appl. Phys. Lett. 105, 183901 (2014).

    Article  ADS  Google Scholar 

  21. Che, S. et al. Retained carrier-mobility and enhanced plasmonic-photovoltaics of graphene via ring-centered η6 functionalization and nanointerfacing. Nano Lett. 17, 4381–4389 (2017).

    Article  ADS  Google Scholar 

  22. Shi, E. et al. Colloidal antireflection coating improves graphene–silicon solar cells. Nano Lett. 13, 1776–1781 (2013).

    Article  ADS  Google Scholar 

  23. Yang, L. et al. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts. ACS Appl. Mater. Interfaces 7, 4135–4141 (2015).

    Article  Google Scholar 

  24. Yavuz, S. et al. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells. Nanoscale 8, 6473–6478 (2016).

    Article  ADS  Google Scholar 

  25. Meng, J. H. et al. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy 28, 44–50 (2016).

    Article  Google Scholar 

  26. Dikai, X. et al. Illumination-induced hole doping for performance improvement of graphene/n-silicon solar cells with P3HT interlayer. Adv. Electron. Mater. 3, 1600516 (2017).

    Article  Google Scholar 

  27. Song, Y. et al. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett. 15, 2104–2110 (2015).

    Article  ADS  Google Scholar 

  28. Jiao, K. et al. The role of MoS2 as an interfacial layer in graphene/silicon solar cells. Phys. Chem. Chem. Phys. 17, 8182–8186 (2015).

    Article  Google Scholar 

  29. Tsuboi, Y. et al. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 7, 14476–14482 (2015).

    Article  ADS  Google Scholar 

  30. Li, X. et al. 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy 16, 310–319 (2015).

    Article  Google Scholar 

  31. He, H. et al. 13.7% efficiency graphene-gallium arsenide Schottky junction solar cells with a P3HT hole transport layer. Nano Energy 16, 91–98 (2015).

    Article  Google Scholar 

  32. Kalita, G., Dzulsyahmi Shaarin, M., Paudel, B., Mahyavanshi, R. & Tanemura, M. Temperature dependent diode and photovoltaic characteristics of graphene–GaN heterojunction. Appl. Phys. Lett. 111, 013504 (2017).

    Article  ADS  Google Scholar 

  33. Wang, P. et al. Tunable graphene/indium phosphide heterostructure solar cells. Nano Energy 13, 509–517 (2015).

    Article  Google Scholar 

  34. Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  ADS  Google Scholar 

  35. Rong, Y., Liu, L., Mei, A., Li, X. & HanH.. mesoscopic perovskite solar cells. Beyond efficiency: the challenge of stability in Adv. Energy Mater 5, 1501066 (2015).

    Google Scholar 

  36. Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.K.B. and V.B. thank Dimerond Technologies, LLC for the support to conduct renewable energy research at the University of Illinois at Chicago. All the authors thank the University of Illinois at Chicago for the support. V.B. thanks funding support from the National Science Foundation (grant: 1054877) and the Office of Naval Research (grants: N000141110767 and N000141812583).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjay K. Behura or Vikas Berry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behura, S.K., Wang, C., Wen, Y. et al. Graphene–semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics 13, 312–318 (2019). https://doi.org/10.1038/s41566-019-0391-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0391-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing