A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light


Broadband strong light absorption of unpolarized light over a wide range of angles in a large-area ultrathin film is critical for applications such as photovoltaics, photodetectors, thermal emitters and optical modulators. Despite long-standing efforts in design and fabrication, it has been challenging to achieve all these desired properties simultaneously. We experimentally demonstrate a 12.5 cm2, 90-nm-thick graphene metamaterial with approximately 85% absorptivity of unpolarized, visible and near-infrared light covering almost the entire solar spectrum (300–2,500 nm). The metamaterial consists of alternating graphene and dielectric layers; a grating couples the light into waveguide modes to achieve broadband absorption over incident angles up to 60°. The very broad spectral and angular responses of the absorber are ideal for solar thermal applications, as we illustrate by showing heating to 160 °C in natural sunlight. These devices open a novel approach to applications of strongly absorbing large-area photonic devices based on two-dimensional materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of graphene-based metamaterial absorber.
Fig. 2: Calculated absorptivity spectra of graphene-based material absorber.
Fig. 3: Fabrication process and results of graphene-based metamaterial absorber.
Fig. 4: Measured absorptivity spectra of graphene-based metamaterial absorber.
Fig. 5: Measured absorptivity spectra and photo-thermal performance of a large-area graphene-based metamaterial absorber.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Cao, A., Zhang, X., Xu, C., Wei, B. & Wu, D. Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption. Sol. Energy Mater. Sol. Cells 70, 481–486 (2002).

    Article  Google Scholar 

  2. 2.

    Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).

    Article  Google Scholar 

  3. 3.

    Ren, H. et al. Hierarchical graphene foam for efficient omnidirectional solar–thermal energy conversion. Adv. Mater. 29, 1702590 (2017).

  4. 4.

    Zhu, M. et al. Tree‐inspired design for high‐efficiency water extraction. Adv. Mater. 29, 1704107 (2017).

  5. 5.

    Li, X. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl Acad. Sci. USA 113, 13953–13958 (2016).

    Article  Google Scholar 

  6. 6.

    Huang, J. et al. Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nat. Nanotechnol. 11, 60–66 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Yao, Y. et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14, 6526–6532 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Mellouki, I., Bennaji, N. & Yacoubi, N. IR characterization of graphite black-coating for cryogenic detectors. Infrared Phys. Technol. 50, 58–62 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    Shi, H., Ok, J. G., Won Baac, H. & Jay Guo, L. Low density carbon nanotube forest as an index-matched and near perfect absorption coating. Appl. Phys. Lett. 99, 211103 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Mizuno, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA 106, 6044–6047 (2009).

    ADS  Article  Google Scholar 

  12. 12.

    Xu, T. et al. Structural colors: from plasmonic to carbon nanostructures. Small 7, 3128–3136 (2011).

    Article  Google Scholar 

  13. 13.

    Hedayati, M. K., Faupel, F. & Elbahri, M. Tunable broadband plasmonic perfect absorber at visible frequency. Appl. Phys. A 109, 769–773 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Zhou, L. et al. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 32, 195–200 (2017).

    Article  Google Scholar 

  16. 16.

    Hedayati, M. K. et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater. 23, 5410–5414 (2011).

    Article  Google Scholar 

  17. 17.

    Aydin, K., Ferry, V. E., Briggs, R. M. & Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    Landy, N., Sajuyigbe, S., Mock, J., Smith, D. & Padilla, W. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    Massiot, I. et al. Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers. ACS Photonics 1, 878–884 (2014).

    Article  Google Scholar 

  20. 20.

    Ding, F. et al. Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photonics Rev. 8, 946–953 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Wu, D. et al. Numerical study of the wide‐angle polarization‐independent ultra‐broadband efficient selective solar absorber in the entire solar spectrum. Solar RRL 1, 1770126 (2017).

  22. 22.

    Sturmberg, B. C. et al. Total absorption of visible light in ultrathin weakly absorbing semiconductor gratings. Optica 3, 556–562 (2016).

    Article  Google Scholar 

  23. 23.

    Zhu, L. et al. Angle-selective perfect absorption with two-dimensional materials. Light Sci. Appl. 5, e16052 (2016).

    Article  Google Scholar 

  24. 24.

    Xiang, Y. et al. Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep. 4, 5483 (2014).

    Article  Google Scholar 

  25. 25.

    Riley, C. T. et al. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles. Proc. Natl Acad. Sci. USA 114, 1264–1268 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Luo, H., Cheng, Y. & Gong, R. Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches. Eur. Phys. J. B 81, 387–392 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    Popov, E. et al. Total absorption of unpolarized light by crossed gratings. Opt. Express 16, 6146–6155 (2008).

    ADS  Article  Google Scholar 

  28. 28.

    Lee, K.-T., Ji, C. & Guo, L. J. Wide-angle, polarization-independent ultrathin broadband visible absorbers. Appl. Phys. Lett. 108, 031107 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Lin, S.-Y., Moreno, J. & Fleming, J. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Appl. Phys. Lett. 83, 380–382 (2003).

    ADS  Article  Google Scholar 

  30. 30.

    Li, Z., Palacios, E., Butun, S., Kocer, H. & Aydin, K. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci. Rep. 5, 15137 (2015).

  31. 31.

    Koppens, F. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    ADS  Article  Google Scholar 

  32. 32.

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008).

    ADS  Article  Google Scholar 

  33. 33.

    Ferreira, A. & Peres, N. Complete light absorption in graphene-metamaterial corrugated structures. Phys. Rev. B 86, 205401 (2012).

    ADS  Article  Google Scholar 

  34. 34.

    Thongrattanasiri, S., Koppens, F. H. & de Abajo, F. J. G. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Ferreira, A., Peres, N., Ribeiro, R. & Stauber, T. Graphene-based photodetector with two cavities. Phys. Rev. B 85, 115438 (2012).

    ADS  Article  Google Scholar 

  36. 36.

    Nefedov, I. S., Valaginnopoulos, C. A. & Melnikov, L. A. Perfect absorption in graphene multilayers. J. Opt. 15, 114003 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Chang, Y.-C. et al. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun. 7, 10568 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Zheng, X. et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun. 6, 8433 (2015).

    Article  Google Scholar 

  39. 39.

    Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).

    Article  Google Scholar 

  40. 40.

    Fang, A., Koschny, T. & Soukoulis, C. M. Optical anisotropic metamaterials: Negative refraction and focusing. Phys. Rev. B 79, 245127 (2009).

    ADS  Article  Google Scholar 

  41. 41.

    Dossou, K. B. et al. Modal formulation for diffraction by absorbing photonic crystal slabs. JOSA A 29, 817–831 (2012).

    ADS  Article  Google Scholar 

  42. 42.

    Sturmberg, B. C. et al. EMUstack: an open source route to insightful electromagnetic computation via the Bloch mode scattering matrix method. Comput. Phys. Commun. 202, 276–286 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Kotov, N. A., Dékány, I. & Fendler, J. H. Ultrathin graphite oxide–polyelectrolyte composites prepared by self‐assembly: Transition between conductive and non‐conductive states. Adv. Mater. 8, 637–641 (1996).

    Article  Google Scholar 

  44. 44.

    Zhang, Y. L. et al. Photoreduction of graphene oxides: methods, properties, and applications. Adv. Opt. Mater. 2, 10–28 (2014).

    ADS  Article  Google Scholar 

  45. 45.

    Zheng, X., Jia, B., Chen, X. & Gu, M. In situ third‐order non‐linear responses during laser reduction of graphene oxide thin films towards on‐chip non‐linear photonic devices. Adv. Mater. 26, 2699–2703 (2014).

    Article  Google Scholar 

  46. 46.

    Guo, L. et al. Laser‐mediated programmable N doping and simultaneous reduction of graphene oxides. Adv. Opt. Mater. 2, 120–125 (2014).

    Article  Google Scholar 

  47. 47.

    Kravets, V. et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010).

    ADS  Article  Google Scholar 

  48. 48.

    Bouchitté, G. & Petit, R. On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen. Radio Sci. 24, 13–26 (1989).

    ADS  Article  Google Scholar 

  49. 49.

    Booth, H. Laser processing in industrial solar module manufacturing. J. Laser Micro. Nanoen. 5, 183–191 (2010).

    Article  Google Scholar 

  50. 50.

    Hummers, W. S. Jr & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

    Article  Google Scholar 

Download references


B.J. and K.L. acknowledge the support from the Australian Research Council (DP190103186). Discussions with K. Catchpole and T. White from the Australian National University during the early stages of this research are gratefully acknowledged.

Author information




H.L., B.S., C.M.d.S. and B.J. conceived original idea and proposed the project. H.L. X.Z. and Y.Y. carried out experiments including GO film synthesis, laser fabrication and characterizations. B.S. and C.M.d.S. developed the theoretical models and numerical simulations. T.C. coated the Ag reflector and SiO2 spacer layer on silicon substrates. H.L. and K.L. performed the thermal imaging and temperature measurement. H.L., K.L., B.S., C.M.d.S. and B.J. contributed to data analysis and writing and revising the manuscript. C.M.d.S. and B.J. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to C. Martijn de Sterke or Baohua Jia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary results and discussion, Supplementary Figures 1–17, Supplementary Tables 1–4 and Supplementary References 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Sturmberg, B.C.P., Lin, KT. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 13, 270–276 (2019). https://doi.org/10.1038/s41566-019-0389-3

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing