Anisotropic structural dynamics of monolayer crystals revealed by femtosecond surface X-ray scattering

Abstract

Ultrafast X-ray scattering is one of the primary tools to track intrinsic crystallographic evolution with atomic accuracy in real time. However, its application to study nonequilibrium structural properties at the two-dimensional limit remains a long-standing challenge due to a significant reduction of diffraction volume and complexity of data analysis. Here, we report femtosecond surface X-ray diffraction in combination with crystallographic model-refinement calculations to quantify the ultrafast structural dynamics of monolayer WSe2 crystals supported on a substrate. We found the absorbed optical photon energy is preferably coupled to the in-plane lattice vibrations within one picosecond whereas the out-of-plane lattice vibration amplitude remains unchanged during the first ten picoseconds. The model-assisted fitting suggests an asymmetric intralayer spacing change upon excitation. The observed nonequilibrium anisotropic structural dynamics agrees with first-principles modelling in both real and momentum space, marking the distinct structural dynamics of monolayer crystals from their bulk counterparts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental set-up and static surface X-ray diffraction.
Fig. 2: In-plane structural dynamics.
Fig. 3: Out-of-plane structural dynamics.
Fig. 4: NAQMD simulations.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  2. 2.

    Ajayan, P., Kim, P. & Banerjee, K. Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (September, 2016).

  3. 3.

    Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 9, 466–470 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Sun, Y., Wang, R. & Liu, K. Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications. Appl. Phys. Rev. 4, 011301 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Nika, D. L. & Balandin, A. A. Two-dimensional phonon transport in graphene. J. Phys. Condens. Matter 24, 233203 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Frigge, T. et al. Optically excited structural transition in atomic wires on surfaces at the quantum limit. Nature 544, 207–211 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    ADS  Article  Google Scholar 

  10. 10.

    Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of T c in FeSe films on SrTiO3. Nature 515, 245–248 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Chow, C. M. et al. Unusual exciton–phonon Interactions at van der Waals engineered interfaces. Nano Lett. 17, 1194–1199 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Jin, C. et al. Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 13, 127–131 (2017).

    Article  Google Scholar 

  14. 14.

    Gerber, S. et al. Femtosecond electron–phonon lock-in by photoemission and X-ray free-electron laser. Science 357, 71–75 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Raman, R. K. et al. Direct observation of optically induced transient structures in graphite using ultrafast electron crystallography. Phys. Rev. Lett. 101, 077401 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Lin, M.-F. et al. Ultrafast non-radiative dynamics of atomically thin MoSe2. Nat. Commun. 8, 1745 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Waldecker, L. et al. Momentum-resolved view of electron–phonon coupling in multilayer WSe2. Phys. Rev. Lett. 119, 036803 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Cremons, D. R., Plemmons, D. A. & Flannigan, D. J. Femtosecond electron imaging of defect-modulated phonon dynamics. Nat. Commun. 7, 11230 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Cremons, D. R., Plemmons, D. A. & Flannigan, D. J. Defect-mediated phonon dynamics in TaS2 and WSe2. Struct. Dyn. 4, 044019 (2017).

    Article  Google Scholar 

  20. 20.

    Ruan, C.-Y., Vigliotti, F., Lobastov, V. A., Chen, S. & Zewail, A. H. Ultrafast electron crystallography: transient structures of molecules, surfaces, and phase transitions. Proc. Natl Acad. Sci. USA 101, 1123–1128 (2004).

    ADS  Article  Google Scholar 

  21. 21.

    Ruan, C.-Y., Lobastov, V. A., Vigliotti, F., Chen, S. & Zewail, A. Ultrafast electron crystallography of interfacial water. Science 304, 80–84 (2004).

    ADS  Article  Google Scholar 

  22. 22.

    Mannebach, E. M. et al. Dynamic structural response and deformations of monolayer MoS2 visualized by femtosecond electron diffraction. Nano Lett. 15, 6889–6895 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Hu, J., Vanacore, G. M., Cepellotti, A., Marzari, N. & Zewail, A. H. Rippling ultrafast dynamics of suspended 2D monolayers, graphene. Proc. Natl Acad. Sci. USA 113, E6555–E6561 (2016).

    Article  Google Scholar 

  24. 24.

    Mannebach, E. M. et al. Dynamic optical tuning of interlayer interactions in the transition metal dichalcogenides. Nano Lett. 17, 7761–7766 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Shen, Y. Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem. 64, 129–150 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Jones, A. M. et al. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat. Phys. 12, 323–327 (2016).

    Article  Google Scholar 

  27. 27.

    Mishra, H., Bose, A., Dhar, A. & Bhattacharya, S. Exciton–phonon coupling and band-gap renormalization in monolayer WSe2. Phys. Rev. B 98, 045143 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889–893 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Robinson, I. K. & Tweet, D. J. Surface X-ray diffraction. Rep. Prog. Phys. 55, 599–651 (1992).

    ADS  Article  Google Scholar 

  31. 31.

    Brivio, J., Alexander, D. T. L. & Kis, A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 11, 5148–5153 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    ADS  Article  Google Scholar 

  33. 33.

    Shimojo, F. et al. Large nonadiabatic quantum molecular dynamics simulations on parallel computers. Comput. Phys. Commun. 184, 1–8 (2013).

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Sadasivam, S., Chan, M. K. & Darancet, P. Theory of thermal relaxation of electrons in semiconductors. Phys. Rev. Lett. 119, 136602 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Ataca, C., Topsakal, M., Aktürk, E. & Ciraci, S. A comparative study of lattice dynamics of three- and two-dimensional MoS2. J. Phys. Chem. 115, 16354–16361 (2011).

    Google Scholar 

  36. 36.

    Clark, G. et al. Vapor-transport growth of high optical quality WSe2 monolayers. APL Mater. 2, 101101 (2014).

    ADS  Article  Google Scholar 

  37. 37.

    Jiang, Z. Gixsgui: a matlab toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. J. Appl. Cryst. 48, 917–926 (2015).

    Article  Google Scholar 

  38. 38.

    Renaud, G. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering. Surf. Sci. Rep. 32, 5–90 (1998).

    ADS  Article  Google Scholar 

  39. 39.

    Mannsfeld, S. C. B., Virkar, A., Reese, C., Toney, M. F. & Bao, Z. Precise structure of pentacene monolayers on amorphous silicon oxide and relation to charge transport. Adv. Mater. 21, 2294–2298 (2009).

    Article  Google Scholar 

  40. 40.

    Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Shimojo, F. et al. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations. J. Chem. Phys. 140, 18A529 (2014).

    Article  Google Scholar 

  42. 42.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    Kohn, W. & Sham, L. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    ADS  MathSciNet  Article  Google Scholar 

  44. 44.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  Article  Google Scholar 

  45. 45.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS  Article  Google Scholar 

  46. 46.

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

I.-C.T., Q.Z., K.S., G.C., X.X. and H.W. acknowledge support from the Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-SC0012509. A.K., H.K., A.N., F.S., R.K.K. and P.V. acknowledge support of the Computational Materials Sciences Program funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under Award Number DE-SC0014607. E.M.M., C.N., A.M.L. and T.F.H. acknowledge support by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515. F.E. gratefully acknowledges grant LPDS 2013-13 from the German National Academy of Sciences Leopoldina. NAQMD simulations were performed at the Argonne Leadership Computing Facility under the Department of Energy, the Innovative and Novel Computational Impact on Theory and Experiment Program and at the Center for High Performance Computing of the University of Southern California. Use of the Linac Coherent Light Source, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. Work at the Advanced Photon Source and the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. S.Sa. was supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory.

Author information

Affiliations

Authors

Contributions

I.C.T., H.Z., Q.Z., K.S., E.M., C.N., F.E., D.Z., J.G., M.K., S.Song, S.N., T.H., X.X., A.L. and H.W. performed the experiments. A.K. H.K., F.S., R.K., R.V., A.N., S. Sadavisam and P.D. performed first-principles calculations. K.S., G.C. and X.X. made samples. I.C.T. and H.W. wrote the manuscript with contributions from all authors. H.W. and X.X. conceived this study.

Corresponding author

Correspondence to Haidan Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tung, I., Krishnamoorthy, A., Sadasivam, S. et al. Anisotropic structural dynamics of monolayer crystals revealed by femtosecond surface X-ray scattering. Nat. Photonics 13, 425–430 (2019). https://doi.org/10.1038/s41566-019-0387-5

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing