Abstract
Orbital angular momentum (OAM) carried by helical light beams is an unbounded degree of freedom that offers a promising platform in modern photonics. So far, integrated sources of coherent light carrying OAM are based on resonators whose design imposes a single, non-tailorable chirality of the wavefront (that is, clockwise or counterclockwise vortices). Here we propose and demonstrate the realization of an integrated microlaser where the chirality of the wavefront can be optically controlled. Importantly, the scheme that we use, based on the optical breaking of time-reversal symmetry in a semiconductor microcavity, can be extended to different laser architectures, thus paving the way to the realization of a new generation of OAM microlasers with tunable chirality.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.
References
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
Fickler, R., Campbell, G., Buchler, B., Lam, P. K. & Zeilinger, A. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl Acad. Sci. USA 113, 13642–13647 (2016).
Gibson, G. et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).
Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).
Willner, A. E. et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 7, 66–106 (2015).
Vallone, G. et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014).
Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).
Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).
Kaszlikowski, D., Gnaciński, P., Żukowski, M., Miklaszewski, W. & Zeilinger, A. Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418–4421 (2000).
Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).
Gao, D. et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6, e17039 (2017).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).
Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).
Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).
Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).
Bouchard, F. et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett. 105, 101905 (2014).
Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).
Naidoo, D. et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photon. 10, 327–332 (2016).
Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).
Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).
Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).
Dufferwiel, S. et al. Spin textures of exciton–polaritons in a tunable microcavity with large TE-TM splitting. Phys. Rev. Lett. 115, 246401 (2015).
Sala, V. G. et al. Spin–orbit coupling for photons and polaritons in microstructures. Phys. Rev. X 5, 011034 (2015).
Bliokh, K. Y., Rodrguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).
Michaelis de Vasconcellos, S. et al. Spatial, spectral, and polarization properties of coupled micropillar cavities. Appl. Phys. Lett. 99, 101103 (2011).
Ando, H., Sogawa, T. & Gotoh, H. Photon-spin controlled lasing oscillation in surface-emitting lasers. Appl. Phys. Lett. 73, 566 (1998).
Hsu, F.-k, Xie, W., Lee, Y.-S., Lin, S.-D. & Lai, C.-W. Ultrafast spin-polarized lasing in a highly photoexcited semiconductor microcavity at room temperature. Phys. Rev. B 91, 195312 (2015).
Sturge, M. D. Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962).
Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).
Fenton, E. F., Khan, A., Solano, P., Orozco, L. A. & Fatemi, F. K. Spin-optomechanical coupling between light and a nanofiber torsional mode. Opt. Lett. 43, 1534–1537 (2018).
Fong, C. F., Ota, Y., Iwamoto, S. & Arakawa, Y. Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity. Opt. Express 26, 21219 (2018).
Acknowledgements
The authors thank L. A. Orozco for discussions. This work was supported by ERC grant Honeypol, the H2020-FETFLAG project PhoQus (project no. 820392), the QUANTERA project Interpol (ANR-QUAN-0003-05), the French National Research Agency (ANR) projects Quantum Fluids of Light (ANR-16-CE30-0021), Labex CEMPI (ANR-11-LABX-0007), NanoSaclay (ICQOQS, grant no. ANR-10-LABX-0035), and IDEX-ISITE 16-IDEX-0001 (CAP 20-25), the French RENATECH network, the CPER Photonics for Society P4S and the Métropole Européenne de Lille via the project TFlight. P.S.-J. acknowledges financial support from the Marie Curie individual fellowship ToPol and from the Natural Sciences and Engineering Research Council of Canada. D.D.S. acknowledges the support of IUF (Institut Universitaire de France).
Author information
Authors and Affiliations
Contributions
N.C.Z. and P.S.-J. performed the experiments, analysed the data and wrote the manuscript. P.S.-J. developed the group theory arguments. M.M. performed preliminary work. A.L., A.H., L.L. and I.S. grew and processed the sample. O.B., D.D.S. and G.M. provided theoretical input. S.R. participated in the experimental work and in scientific discussions. A.A. and J.B. designed the experiment and supervised the work. All authors revised the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
This file contains more information about the work, Supplementary Figures 1–8 and Supplementary Tables I and II.
Rights and permissions
About this article
Cite this article
Carlon Zambon, N., St-Jean, P., Milićević, M. et al. Optically controlling the emission chirality of microlasers. Nat. Photonics 13, 283–288 (2019). https://doi.org/10.1038/s41566-019-0380-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-019-0380-z
This article is cited by
-
Vortex nanolaser based on a photonic disclination cavity
Nature Photonics (2023)
-
Topological soliton metacrystals
Communications Physics (2022)
-
A crystal of light vortices
Nature Photonics (2022)
-
Nanophotonic nonlinear and laser devices exploiting bound states in the continuum
Communications Physics (2022)
-
Towards higher-dimensional structured light
Light: Science & Applications (2022)