Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optically controlling the emission chirality of microlasers


Orbital angular momentum (OAM) carried by helical light beams is an unbounded degree of freedom that offers a promising platform in modern photonics. So far, integrated sources of coherent light carrying OAM are based on resonators whose design imposes a single, non-tailorable chirality of the wavefront (that is, clockwise or counterclockwise vortices). Here we propose and demonstrate the realization of an integrated microlaser where the chirality of the wavefront can be optically controlled. Importantly, the scheme that we use, based on the optical breaking of time-reversal symmetry in a semiconductor microcavity, can be extended to different laser architectures, thus paving the way to the realization of a new generation of OAM microlasers with tunable chirality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spin–orbit coupling in benzene-like OAM lasers.
Fig. 2: Orbital angular momentum lasing in the \(\left| \ell \right| = 1\) manifold.
Fig. 3: Orbital angular momentum lasing in the \(\left| \ell \right| = 2\) manifold.
Fig. 4: Operation at 80 K.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS  Article  Google Scholar 

  2. 2.

    Fickler, R., Campbell, G., Buchler, B., Lam, P. K. & Zeilinger, A. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl Acad. Sci. USA 113, 13642–13647 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Gibson, G. et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).

    ADS  Article  Google Scholar 

  4. 4.

    Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    Willner, A. E. et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 7, 66–106 (2015).

    Article  Google Scholar 

  7. 7.

    Vallone, G. et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).

    Article  Google Scholar 

  9. 9.

    Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).

    Article  Google Scholar 

  10. 10.

    Kaszlikowski, D., Gnaciński, P., Żukowski, M., Miklaszewski, W. & Zeilinger, A. Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418–4421 (2000).

    ADS  Article  Google Scholar 

  11. 11.

    Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).

    ADS  Article  Google Scholar 

  12. 12.

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Article  Google Scholar 

  13. 13.

    Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Gao, D. et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6, e17039 (2017).

    Article  Google Scholar 

  15. 15.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Bouchard, F. et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett. 105, 101905 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    ADS  Article  Google Scholar 

  22. 22.

    Naidoo, D. et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photon. 10, 327–332 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Dufferwiel, S. et al. Spin textures of exciton–polaritons in a tunable microcavity with large TE-TM splitting. Phys. Rev. Lett. 115, 246401 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Sala, V. G. et al. Spin–orbit coupling for photons and polaritons in microstructures. Phys. Rev. X 5, 011034 (2015).

    Google Scholar 

  28. 28.

    Bliokh, K. Y., Rodrguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Michaelis de Vasconcellos, S. et al. Spatial, spectral, and polarization properties of coupled micropillar cavities. Appl. Phys. Lett. 99, 101103 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Ando, H., Sogawa, T. & Gotoh, H. Photon-spin controlled lasing oscillation in surface-emitting lasers. Appl. Phys. Lett. 73, 566 (1998).

    ADS  Article  Google Scholar 

  31. 31.

    Hsu, F.-k, Xie, W., Lee, Y.-S., Lin, S.-D. & Lai, C.-W. Ultrafast spin-polarized lasing in a highly photoexcited semiconductor microcavity at room temperature. Phys. Rev. B 91, 195312 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    Sturge, M. D. Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962).

    ADS  Article  Google Scholar 

  33. 33.

    Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    ADS  Article  Google Scholar 

  35. 35.

    Fenton, E. F., Khan, A., Solano, P., Orozco, L. A. & Fatemi, F. K. Spin-optomechanical coupling between light and a nanofiber torsional mode. Opt. Lett. 43, 1534–1537 (2018).

    ADS  Article  Google Scholar 

  36. 36.

    Fong, C. F., Ota, Y., Iwamoto, S. & Arakawa, Y. Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity. Opt. Express 26, 21219 (2018).

    ADS  Article  Google Scholar 

Download references


The authors thank L. A. Orozco for discussions. This work was supported by ERC grant Honeypol, the H2020-FETFLAG project PhoQus (project no. 820392), the QUANTERA project Interpol (ANR-QUAN-0003-05), the French National Research Agency (ANR) projects Quantum Fluids of Light (ANR-16-CE30-0021), Labex CEMPI (ANR-11-LABX-0007), NanoSaclay (ICQOQS, grant no. ANR-10-LABX-0035), and IDEX-ISITE 16-IDEX-0001 (CAP 20-25), the French RENATECH network, the CPER Photonics for Society P4S and the Métropole Européenne de Lille via the project TFlight. P.S.-J. acknowledges financial support from the Marie Curie individual fellowship ToPol and from the Natural Sciences and Engineering Research Council of Canada. D.D.S. acknowledges the support of IUF (Institut Universitaire de France).

Author information




N.C.Z. and P.S.-J. performed the experiments, analysed the data and wrote the manuscript. P.S.-J. developed the group theory arguments. M.M. performed preliminary work. A.L., A.H., L.L. and I.S. grew and processed the sample. O.B., D.D.S. and G.M. provided theoretical input. S.R. participated in the experimental work and in scientific discussions. A.A. and J.B. designed the experiment and supervised the work. All authors revised the manuscript.

Corresponding authors

Correspondence to N. Carlon Zambon or P. St-Jean.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work, Supplementary Figures 1–8 and Supplementary Tables I and II.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carlon Zambon, N., St-Jean, P., Milićević, M. et al. Optically controlling the emission chirality of microlasers. Nat. Photonics 13, 283–288 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing