Orbital angular momentum (OAM) carried by helical light beams is an unbounded degree of freedom that offers a promising platform in modern photonics. So far, integrated sources of coherent light carrying OAM are based on resonators whose design imposes a single, non-tailorable chirality of the wavefront (that is, clockwise or counterclockwise vortices). Here we propose and demonstrate the realization of an integrated microlaser where the chirality of the wavefront can be optically controlled. Importantly, the scheme that we use, based on the optical breaking of time-reversal symmetry in a semiconductor microcavity, can be extended to different laser architectures, thus paving the way to the realization of a new generation of OAM microlasers with tunable chirality.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

  2. 2.

    Fickler, R., Campbell, G., Buchler, B., Lam, P. K. & Zeilinger, A. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl Acad. Sci. USA 113, 13642–13647 (2016).

  3. 3.

    Gibson, G. et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).

  4. 4.

    Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

  5. 5.

    Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

  6. 6.

    Willner, A. E. et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 7, 66–106 (2015).

  7. 7.

    Vallone, G. et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014).

  8. 8.

    Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).

  9. 9.

    Erhard, M., Fickler, R., Krenn, M. & Zeilinger, A. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018).

  10. 10.

    Kaszlikowski, D., Gnaciński, P., Żukowski, M., Miklaszewski, W. & Zeilinger, A. Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418–4421 (2000).

  11. 11.

    Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).

  12. 12.

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

  13. 13.

    Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photon. 5, 343–348 (2011).

  14. 14.

    Gao, D. et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6, e17039 (2017).

  15. 15.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

  16. 16.

    Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).

  17. 17.

    Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

  18. 18.

    Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

  19. 19.

    Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

  20. 20.

    Bouchard, F. et al. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett. 105, 101905 (2014).

  21. 21.

    Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

  22. 22.

    Naidoo, D. et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photon. 10, 327–332 (2016).

  23. 23.

    Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

  24. 24.

    Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

  25. 25.

    Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

  26. 26.

    Dufferwiel, S. et al. Spin textures of exciton–polaritons in a tunable microcavity with large TE-TM splitting. Phys. Rev. Lett. 115, 246401 (2015).

  27. 27.

    Sala, V. G. et al. Spin–orbit coupling for photons and polaritons in microstructures. Phys. Rev. X 5, 011034 (2015).

  28. 28.

    Bliokh, K. Y., Rodrguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

  29. 29.

    Michaelis de Vasconcellos, S. et al. Spatial, spectral, and polarization properties of coupled micropillar cavities. Appl. Phys. Lett. 99, 101103 (2011).

  30. 30.

    Ando, H., Sogawa, T. & Gotoh, H. Photon-spin controlled lasing oscillation in surface-emitting lasers. Appl. Phys. Lett. 73, 566 (1998).

  31. 31.

    Hsu, F.-k, Xie, W., Lee, Y.-S., Lin, S.-D. & Lai, C.-W. Ultrafast spin-polarized lasing in a highly photoexcited semiconductor microcavity at room temperature. Phys. Rev. B 91, 195312 (2015).

  32. 32.

    Sturge, M. D. Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962).

  33. 33.

    Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

  34. 34.

    Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

  35. 35.

    Fenton, E. F., Khan, A., Solano, P., Orozco, L. A. & Fatemi, F. K. Spin-optomechanical coupling between light and a nanofiber torsional mode. Opt. Lett. 43, 1534–1537 (2018).

  36. 36.

    Fong, C. F., Ota, Y., Iwamoto, S. & Arakawa, Y. Scheme for media conversion between electronic spin and photonic orbital angular momentum based on photonic nanocavity. Opt. Express 26, 21219 (2018).

Download references


The authors thank L. A. Orozco for discussions. This work was supported by ERC grant Honeypol, the H2020-FETFLAG project PhoQus (project no. 820392), the QUANTERA project Interpol (ANR-QUAN-0003-05), the French National Research Agency (ANR) projects Quantum Fluids of Light (ANR-16-CE30-0021), Labex CEMPI (ANR-11-LABX-0007), NanoSaclay (ICQOQS, grant no. ANR-10-LABX-0035), and IDEX-ISITE 16-IDEX-0001 (CAP 20-25), the French RENATECH network, the CPER Photonics for Society P4S and the Métropole Européenne de Lille via the project TFlight. P.S.-J. acknowledges financial support from the Marie Curie individual fellowship ToPol and from the Natural Sciences and Engineering Research Council of Canada. D.D.S. acknowledges the support of IUF (Institut Universitaire de France).

Author information

Author notes

  1. These authors contributed equally: N. Carlon Zambon, P. St-Jean.


  1. Centre de Nanosciences et de Nanotechnologies (C2N), CNRS - Université Paris-Sud - Université Paris-Saclay, Palaiseau, France

    • N. Carlon Zambon
    • , P. St-Jean
    • , M. Milićević
    • , A. Lemaître
    • , A. Harouri
    • , L. Le Gratiet
    • , I. Sagnes
    • , S. Ravets
    •  & J. Bloch
  2. Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand, France

    • O. Bleu
    • , D. D. Solnyshkov
    •  & G. Malpuech
  3. Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules, Lille, France

    • A. Amo


  1. Search for N. Carlon Zambon in:

  2. Search for P. St-Jean in:

  3. Search for M. Milićević in:

  4. Search for A. Lemaître in:

  5. Search for A. Harouri in:

  6. Search for L. Le Gratiet in:

  7. Search for O. Bleu in:

  8. Search for D. D. Solnyshkov in:

  9. Search for G. Malpuech in:

  10. Search for I. Sagnes in:

  11. Search for S. Ravets in:

  12. Search for A. Amo in:

  13. Search for J. Bloch in:


N.C.Z. and P.S.-J. performed the experiments, analysed the data and wrote the manuscript. P.S.-J. developed the group theory arguments. M.M. performed preliminary work. A.L., A.H., L.L. and I.S. grew and processed the sample. O.B., D.D.S. and G.M. provided theoretical input. S.R. participated in the experimental work and in scientific discussions. A.A. and J.B. designed the experiment and supervised the work. All authors revised the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to N. Carlon Zambon or P. St-Jean.

Supplementary information

  1. Supplementary Information

    This file contains more information about the work, Supplementary Figures 1–8 and Supplementary Tables I and II.

About this article

Publication history




Issue Date