Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond


Optical modulators are at the heart of optical communication links. Ideally, they should feature low loss, low drive voltage, large bandwidth, high linearity, compact footprint and low manufacturing cost. Unfortunately, these criteria have been achieved only on separate occasions. Based on a silicon and lithium niobate hybrid integration platform, we demonstrate Mach–Zehnder modulators that simultaneously fulfil these criteria. The presented device exhibits an insertion loss of 2.5 dB, voltage–length product of 2.2 V cm in single-drive push–pull operation, high linearity, electro-optic bandwidth of at least 70 GHz and modulation rates up to 112 Gbit s−1. The high-performance modulator is realized by seamless integration of a high-contrast waveguide based on lithium niobate—a popular modulator material—with compact, low-loss silicon circuitry. The hybrid platform demonstrated here allows for the combination of ‘best-in-breed’ active and passive components, opening up new avenues for future high-speed, energy-efficient and cost-effective optical communication networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the hybrid Si/LN MZM.
Fig. 2: Static EO performance.
Fig. 3: EO bandwidth and linearity.
Fig. 4: Data transmission testing.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Cisco Cisco Visual Networking Index: Forecast and Methodology 2015–2020 (Cisco, 2016).

  2. Tkach, R. W. Scaling optical communications for the next decade and beyond. Bell Labs Tech. J. 14, 3–10 (2010).

    Article  Google Scholar 

  3. Kilper, D. C. & Rastegarfar, H. Energy challenges in optical access and aggregation networks. Phil. Trans. R. Soc. A. 374, 20140435 (2016).

    Article  ADS  Google Scholar 

  4. Miller, D. Device requirements for optical interconnects to CMOS silicon chips. In Photonics in Switching PMB3 (OSA, 2010).

  5. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

    Article  ADS  Google Scholar 

  6. Heck, M. J. et al. Hybrid silicon photonics for optical interconnects. IEEE J. Sel. Top. Quantum Electron. 17, 333–346 (2011).

    Article  ADS  Google Scholar 

  7. Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401–412 (2005).

    Article  ADS  Google Scholar 

  8. Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    Article  ADS  Google Scholar 

  9. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. J. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  10. Li, M. et al. Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications. Photon. Res. 6, 109–116 (2018).

    Article  Google Scholar 

  11. Ding, R. et al. High-speed silicon modulator with slow-wave electrodes and fully independent differential drive. J. Lightwave Technol. 32, 2240–2247 (2014).

    Article  ADS  Google Scholar 

  12. Dong, P. et al. Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters. IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).

    Article  ADS  Google Scholar 

  13. Samani, A. et al. Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator. Opt. Express 25, 13252–13262 (2017).

    Article  ADS  Google Scholar 

  14. Timurdogan, E. et al. An ultralow power athermal silicon modulator. Nat. Commun. 5, 4008 (2014).

    Article  Google Scholar 

  15. Xiong, C. et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14, 20 (2012).

    Article  Google Scholar 

  16. Zhang, C. et al. Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon. Optica 3, 1483–1488 (2016).

    Article  Google Scholar 

  17. Tang, Y. et al. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator. Opt. Express 19, 5811–5816 (2011).

    Article  ADS  Google Scholar 

  18. Haffner, C. et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photon. 9, 525–528 (2015).

    Article  ADS  Google Scholar 

  19. Haffner, C. et al. Low-loss plasmon-assisted electro-optic modulator. Nature 556, 483–486 (2018).

    Article  ADS  Google Scholar 

  20. Alloatti, L. et al. 100 GHz silicon–organic hybrid modulator. Light Sci. Appl. 3, e173 (2014).

    Article  Google Scholar 

  21. Lee, M. et al. Broadband modulation of light by using an electro-optic polymer. Science 298, 1401–1403 (2002).

    Article  ADS  Google Scholar 

  22. Han, J.-H. et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photon. 11, 486–490 (2017).

    Article  Google Scholar 

  23. Kikuchi, N., Yamada, E., Shibata, Y. & Ishii, H. High-speed InP-based Mach–Zehnder modulator for advanced modulation formats. In Compound Semiconductor Integrated Circuit Symposium (CSICS) 1–4 (IEEE, 2012).

  24. Phare, C. T., Lee, Y. H. D., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

    Article  ADS  Google Scholar 

  25. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  ADS  Google Scholar 

  26. Sorianello, V. et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

    Article  ADS  Google Scholar 

  27. Chen, A. Broadband Optical Modulators: Science, Technology, and Applications (CRC Press, 2011).

  28. Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron 6, 69–82 (2000).

    Article  ADS  Google Scholar 

  29. Raybon, G. et al. Single carrier high symbol rate transmitter for data rates up to 1.0 Tb/s. In Optical Fiber Communication Conference Th3A.2 (OSA, 2016).

  30. Janner, D., Tulli, D., García-Granda, M., Belmonte, M. & Pruneri, V. Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photon. Rev. 3, 301–313 (2009).

    Article  ADS  Google Scholar 

  31. Poberaj, G., Hu, H., Sohler, W. & Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev. 6, 488–503 (2012).

    Article  ADS  Google Scholar 

  32. Guarino, A., Poberaj, G., Rezzonico, D., Degl’Innocenti, R. & Günter, P. Electro–optically tunable microring resonators in lithium niobate. Nat. Photon. 1, 407–410 (2007).

    Article  ADS  Google Scholar 

  33. Jin, S., Xu, L., Zhang, H. & Li, Y. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photon. Technol. Lett. 28, 736–739 (2016).

    Article  ADS  Google Scholar 

  34. Rao, A. et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41, 5700–5703 (2016).

    Article  ADS  Google Scholar 

  35. Wang, J. et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Exp. 23, 23072–23078 (2015).

    Article  ADS  Google Scholar 

  36. Cai, L., Kang, Y. & Hu, H. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film. Opt. Exp. 24, 4640–4647 (2016).

    Article  ADS  Google Scholar 

  37. Chang, L. et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531–535 (2016).

    Article  Google Scholar 

  38. Chang, L. et al. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 42, 803–806 (2017).

    Article  ADS  Google Scholar 

  39. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  ADS  Google Scholar 

  40. Boes, A., Corcoran, B., Chang, L., Bowers, J. & Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev. 12, 1700256 (2018).

    Article  ADS  Google Scholar 

  41. Mercante, A. J. et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Exp. 26, 14810–14816 (2018).

    Article  ADS  Google Scholar 

  42. Rao, A. & Fathpour, S. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron. 24, 1–14 (2018).

    Google Scholar 

  43. Chen, L., Xu, Q., Wood, M. G. & Reano, R. M. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 1, 112–118 (2014).

    Article  Google Scholar 

  44. Weigel, P. O. et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Exp. 26, 23728–23739 (2018).

    Article  ADS  Google Scholar 

  45. QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver Rev. 4.0 (QSFP-DD MSA, 2018);

  46. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  47. Wolf, S. et al. Silicon-organic hybrid (SOH) Mach–Zehnder modulators for 100 Gbit/s on–off keying. Sci. Rep. 8, 2598 (2018).

    Article  ADS  Google Scholar 

  48. Melikyan, A. et al. High-speed plasmonic phase modulators. Nat. Photon. 8, 229–233 (2014).

    Article  ADS  Google Scholar 

  49. Messner, A. et al. Integrated ferroelectric BaTiO3/Si plasmonic modulator for 100 Gbit/s and beyond. In Optical Fiber Communication Conference M2I.6 (OSA, 2018).

  50. Xiong, C. et al. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices. Nano Lett. 14, 1419–1425 (2014).

    Article  ADS  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (NSFC) (11690031, 61675069, 61575224, 61622510); Guangzhou Science and Technology Program (201707010444, 201701010096). X.C. would like to acknowledge helpful discussions with P. Jiang.

Author information

Authors and Affiliations



X.C. developed the idea. X.C. and L.L. conceived device design. M.H. and J.J. carried out the LN fabrication. M.H., S.G., H.C., L.Z., L.L. and S.S. carried out the silicon fabrication. M.H. and Y.R. carried out the bonding process. M.X., Z.R., Y.X., X.W. and C.G., carried out the measurement. L.L. and X.C. carried out the data analysis. All authors contributed to the writing. X.C. finalized the paper. S.Y., L.L. and X.C. supervised the project.

Corresponding authors

Correspondence to Liu Liu or Xinlun Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Waveguide and electrode design.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Xu, M., Ren, Y. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 13, 359–364 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing