Experimental quantum key distribution beyond the repeaterless secret key capacity

Abstract

Quantum communications promise to revolutionize the way information is exchanged and protected. Unlike their classical counterpart, they are based on dim optical pulses that cannot be amplified by conventional optical repeaters. Consequently, they are heavily impaired by propagation channel losses, confining their transmission rate and range below a theoretical limit known as repeaterless secret key capacity. Overcoming this limit with today’s technology was believed to be impossible until the recent proposal of a scheme that uses phase-coherent optical signals and an auxiliary measuring station to distribute quantum information. Here, we experimentally demonstrate such a scheme for the first time and over significant channel losses, in excess of 90 dB. In the high loss regime, the resulting secure key rate exceeds the repeaterless secret key capacity, a result never achieved before. This represents a major step in promoting quantum communications as a dependable resource in today’s world.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental set-up.
Fig. 2: Gain and QBER of TF-QKD.
Fig. 3: TF-QKD key rates.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

References

  1. 1.

    Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014).

    MathSciNet  Article  Google Scholar 

  2. 2.

    Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Townsend, P. D. Quantum cryptography on multiuser optical fibre networks. Nature 385, 47–49 (1997).

    ADS  Article  Google Scholar 

  4. 4.

    Fröhlich, B. et al. A quantum access network. Nature 501, 69–72 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Tamaki, K., Lo, H.-K., Fung, C.-H. F. & Qi, B. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 86, 059903 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  Article  Google Scholar 

  10. 10.

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Article  Google Scholar 

  11. 11.

    Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Guha, S. et al. Rate-loss analysis of an efficient quantum repeater architecture. Phys. Rev. A 92, 022357 (2015).

    ADS  Article  Google Scholar 

  13. 13.

    Takeoka, M., Guha, S. & Wilde, M. M. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5, 5235 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Bennett, C. H., Brassard, G. & Mermin, N. D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Pirandola, S. Capacities of repeater-assisted quantum communications. Preprint at https://arxiv.org/abs/1601.00966 (2016).

  17. 17.

    Azuma, K., Tamaki, K. & Munro, W. J. All-photonic intercity quantum key distribution. Nat. Commun. 6, 10171 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Luong, D., Jiang, L., Kim, J. & Lütkenhaus, N. Overcoming lossy channel bounds using a single quantum repeater node. Appl. Phys. B 122, 96 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Abruzzo, S., Kampermann, H. & Bruß, D. Measurement-device-independent quantum key distribution with quantum memories. Phys. Rev. A 89, 012301 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Panayi, C., Razavi, M., Ma, X. & Lütkenhaus, N. Memory-assisted measurement-device-independent quantum key distribution. New J. Phys. 16, 043005 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters: supplementary material. Nature 557, 400–403 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Tamaki, K., Lo, H.-K., Wang, W. & Lucamarini, M. Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound. Preprint at http://arxiv.org/abs/1805.05511v1 (2018).

  23. 23.

    Ma, X., Zeng, P. & Zhou, H. Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018).

    Google Scholar 

  24. 24.

    Wang, X.-B., Yu, Z.-W. & Hu, X.-L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Cui, C. et al. Phase-matching quantum key distribution without phase post-selection. Preprint at http://arxiv.org/abs/1807.02334 (2018).

  26. 26.

    Curty, M., Azuma, K. & Lo, H.-K. Simple security proof of twin-field type quantum key distribution protocol. Preprint at http://arxiv.org/abs/1807.07667 (2018).

  27. 27.

    Lin, J. & Lütkenhaus, N. Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98, 042332 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Hwang, W.-Y. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003).

    ADS  Article  Google Scholar 

  29. 29.

    Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    ADS  Article  Google Scholar 

  30. 30.

    Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    ADS  Article  Google Scholar 

  31. 31.

    Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Bordonalli, A. C., Walton, C. & Seeds, A. J. High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop. J. Lightwave Technol. 17, 328–342 (1999).

    ADS  Article  Google Scholar 

  35. 35.

    Koashi, M. Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. Phys. Rev. Lett. 93, 120501 (2004).

    ADS  Article  Google Scholar 

  36. 36.

    Comandar, L. C. et al. Near perfect mode overlap between independently seeded, gain-switched lasers. Opt. Express 24, 17849–17859 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Cao, Z., Zhang, Z., Lo, H.-K. & Ma, X. Discrete-phase-randomized coherent state source and its application in quantum key distribution. New J. Phys. 17, 053014 (2015).

    ADS  Article  Google Scholar 

  38. 38.

    Jofre, M. et al. True random numbers from amplified quantum vacuum. Opt. Express 19, 20665–20672 (2011).

    ADS  Article  Google Scholar 

  39. 39.

    Yuan, Z. L. et al. Robust random number generation using steady-state emission of gain-switched laser diodes. Appl. Phys. Lett. 104, 261112 (2014).

    ADS  Article  Google Scholar 

  40. 40.

    Ye, J. et al. Delivery of high-stability optical and microwave frequency standards over an optical fiber network. J. Opt. Soc. Am. B 20, 1459–1467 (2003).

    ADS  Article  Google Scholar 

  41. 41.

    Tamura, Y. et al. The first 0.14-db/km loss optical fiber and its impact on submarine transmission. J. Lightwave Technol. 36, 44–49 (2018).

    ADS  Article  Google Scholar 

  42. 42.

    Zhou, Y.-H., Yu, Z.-W. & Wang, X.-B. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

    MathSciNet  Article  Google Scholar 

  44. 44.

    Wang, X.-B., Hu, X.-L. & Yu, Z.-W. Effective eavesdropping to twin field quantum key distribution. Preprint at http://arxiv.org/abs/1805.02272 (2018).

  45. 45.

    Lo, H.-K. Getting something out of nothing. Quantum Inf. Comput. 5, 413–418 (2005).

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Koashi, M. Efficient quantum key distribution with practical sources and detectors. Preprint at http://arxiv.org/abs/quant-ph/0609180 (2006).

Download references

Acknowledgements

The authors acknowledge useful discussions with M. Curty about the protocol in ref. 26. M.M. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) and Toshiba Research Europe Ltd. M.P. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 675662. G.L.R. acknowledges financial support via the EPSRC funded Centre for Doctoral Training (CDT) in Integrated Photonic and Electronic Systems, Toshiba Research Europe Ltd and The Royal Commission for the Exhibition of 1851.

Author information

Affiliations

Authors

Contributions

M.M. and M.P. developed the experimental set-up, performed the measurements and analysed the data. G.L.R. and J.F.D. supported the experimental work. Z.L.Y., M.L. and A.J.S. guided the work. M.L., M.M. and M.P. provided the simulations and wrote the manuscript, with contributions from all the authors.

Corresponding author

Correspondence to M. Lucamarini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Minder, M., Pittaluga, M., Roberts, G.L. et al. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 13, 334–338 (2019). https://doi.org/10.1038/s41566-019-0377-7

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing