Letter | Published:

Spectrotemporal shaping of itinerant photons via distributed nanomechanics

Nature Photonics (2019) | Download Citation


Efficient phase manipulation of light is the cornerstone of many advanced photonic applications1,2,3,4. However, the pursuit of compact, broadband and deep phase control of light has been hindered by the finite nonlinearity of the optical materials available for integrated photonics5,6. Here, we propose a dynamically driven photonic structure for deep phase manipulation and coherent spectrotemporal control of light based on distributed nanomechanics. We experimentally demonstrate the quasi-phase-matched interaction between stationary mechanical vibration and itinerant optical fields, which is used to generate an on-chip modulated frequency comb over 1.15 THz (160 lines), corresponding to a phase modulation depth of over 21.6π. In addition, an optical time-lens effect induced by mechanical vibration is realized, leading to optical pulse compression of over 70-fold to obtain a minimum pulse duration of 1.02 ps. The high efficiency and versatility make such mechanically driven dynamic photonic structures ideal for realizing complex optical control schemes, such as lossless non-reciprocity7, frequency division optical communication1 and optical frequency comb division8.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Ho, K.-P. Phase-Modulated Optical Communication Systems (Springer Science & Business Media, Berlin, 2005).

  2. 2.

    Agrawal, G. P. Fiber-optic Communication Systems Vol. 222 (John Wiley & Sons, New York, NY, 2012).

  3. 3.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

  4. 4.

    Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

  5. 5.

    Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

  6. 6.

    Reed, G. T., Mashanovich, G., Gardes, F. & Thomson, D. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).

  7. 7.

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

  8. 8.

    Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

  9. 9.

    Kolner, B. H. & Nazarathy, M. Temporal imaging with a time lens. Opt. Lett. 14, 630–632 (1989).

  10. 10.

    Karpiński, M., Jachura, M., Wright, L. J. & Smith, B. J. Bandwidth manipulation of quantum light by an electro-optic time lens. Nat. Photon. 11, 53–57 (2017).

  11. 11.

    Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

  12. 12.

    Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

  13. 13.

    Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

  14. 14.

    Feng, L. et al. Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729–733 (2011).

  15. 15.

    Sounas, D. L., Caloz, C. & Alu, A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4, 2407 (2013).

  16. 16.

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

  17. 17.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  18. 18.

    Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).

  19. 19.

    Bennett, C. V., Scott, R. P. & Kolner, B. H. Temporal magnification and reversal of 100 Gb/s optical data with an up-conversion time microscope. Appl. Phys. Lett. 65, 2513–2515 (1994).

  20. 20.

    Bennett, C. V. & Kolner, B. H. Principles of parametric temporal imaging. Part I. System configuration. IEEE J. Quant. Electron 36, 430–437 (2000).

  21. 21.

    Salem, R. et al. Optical time lens based on four-wave mixing on a silicon chip. Opt. Lett. 33, 1047–1049 (2008).

  22. 22.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

  23. 23.

    Fan, L. et al. Integrated optomechanical single-photon frequency shifter. Nat. Photon. 10, 766–770 (2016).

  24. 24.

    Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

  25. 25.

    Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

  26. 26.

    Kittlaus, E. A., Shin, H. & Rakich, P. T. Large Brillouin amplification in silicon. Nat. Photon. 10, 463–467 (2016).

  27. 27.

    Boyd, R. W. Nonlinear Optics (Academic Press, Cambridge, MA, 2003).

  28. 28.

    Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008).

  29. 29.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

  30. 30.

    Ishizawa, A. et al. Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser. Opt. Express 21, 29186–29194 (2013).

  31. 31.

    Xiong, C. et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14, 095014 (2012).

  32. 32.

    Wu, R., Supradeepa, V., Long, C. M., Leaird, D. E. & Weiner, A. M. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35, 3234–3236 (2010).

  33. 33.

    DeLong, K., Trebino, R., Hunter, J. & White, W. Frequency-resolved optical gating with the use of second-harmonic generation. J. Opt. Soc. Am. B 11, 2206–2215 (1994).

  34. 34.

    Bryan, D., Gerson, R. & Tomaschke, H. Increased optical damage resistance in lithium niobate. Appl. Phys. Lett. 44, 847–849 (1984).

  35. 35.

    Jung, H., Stoll, R., Guo, X., Fischer, D. & Tang, H. X. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica 1, 396–399 (2014).

  36. 36.

    Fang, K. & Fan, S. Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. Phys. Rev. Lett. 111, 203901 (2013).

Download references


We acknowledge funding support from an LPS/ARO grant (W911NF-14-1-0563), an AFOSR MURI grant (FA9550-15-1-0029), a NSF EFRI grant (EFMA-1640959) and the DARPA SCOUT programme, as well as the Packard Foundation. The facilities used were supported by Yale Institute for Nanoscience and Quantum Engineering and NSF MRSEC DMR 1119826. We thank L. Jiang for discussions, and M. Power, M. Rooks and L. Frunzio for assistance with device fabrication.

Author information


  1. Department of Electrical Engineering, Yale University, New Haven, CT, USA

    • Linran Fan
    • , Chang-Ling Zou
    • , Na Zhu
    •  & Hong X. Tang


  1. Search for Linran Fan in:

  2. Search for Chang-Ling Zou in:

  3. Search for Na Zhu in:

  4. Search for Hong X. Tang in:


H.X.T., L.F. and C.-L.Z. conceived the experiment. L.F. fabricated the device. N.Z. fabricated the 3D cavity. L.F. and N.Z. performed the experiment. L.F. and C.-L.Z. analysed the data. All authors contributed to writing the manuscript. H.X.T. supervised the work.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Hong X. Tang.

Supplementary information

  1. Supplementary Information

    Supplementary theory and discussion, Supplementary Figures 1–4 and Supplementary References 1–4.

About this article

Publication history